परिचालन गणना

From Vigyanwiki

{{Short description|Technique to solve differential equations}संक्रियात्मक कलन, जिसे संक्रियात्मक विश्लेषण के रूप में भी जाना जाता है, ऐसी विधि है जिसके द्वारा गणितीय विश्लेषण की समस्याएँ, विशेष अवकल समीकरणों में, बीजगणितीय समस्याओं में बदल दी जाती हैं, सामान्यतः बहुपद समीकरण को हल करने की समस्या।

इतिहास

ऑपरेटर्स के रूप में कलन, विभेदन और एकीकरण की प्रक्रियाओं का प्रतिनिधित्व करने का विचार का लंबा इतिहास है जो गॉटफ्रीड विल्हेम लीबनिज तक जाता है। गणितज्ञ लुइस फ़्राँस्वा एंटोनी अर्बोगैस्ट इन प्रतीकों को उस कार्य से स्वतंत्र रूप से हेरफेर करने वाले पहले लोगों में से थे, जिस पर उन्हें प्रयुक्त किया गया था।[1] इस दृष्टिकोण को फ्रांकस-जोसेफ सर्ब द्वारा विकसित किया गया था जिन्होंने सुविधाजनक अंकन विकसित किए थे।[2] सर्वोइस के बाद ब्रिटिश और आयरिश गणितज्ञों का स्कूल आया जिसमें चार्ल्स जेम्स हारग्रेव, जॉर्ज बूले, बोनिन, कारमाइकल, डौकिन, ग्रेव्स, मर्फी, विलियम स्पोटिसवोडे और सिल्वेस्टर सम्मिलित थे।

1855 में रॉबर्ट बेल कारमाइकल द्वारा साधारण और आंशिक अंतर समीकरणों के लिए ऑपरेटर विधियों के अनुप्रयोग का वर्णन करने वाले ग्रंथ लिखे गए थे।[3] और बोले द्वारा 1859 में।[4] टेलीग्राफी में अपने काम के सिलसिले में इस विधि को 1893 में भौतिक विज्ञानी ओलिवर हीविसाइड द्वारा पूरी तरह से विकसित किया गया था।

उनके सर्किट अध्ययन के पीछे अंतर्ज्ञान और भौतिकी पर उनके ज्ञान के धन से बहुत निर्देशित, [हेविसाइड] ने परिचालन कलन को विकसित किया जो अब उनके नाम पर है।[5]

उस समय, हीविसाइड के तरीके कठोर नहीं थे, और उनका काम गणितज्ञों द्वारा और विकसित नहीं किया गया था। ऑपरेशनल कैलकुलस ने सबसे पहले विद्युत अभियन्त्रण समस्याओं में अनुप्रयोगों की खोज की, के लिए 1910 के बाद, अर्न्स्ट जूलियस बर्ग, जॉन रेनशॉ कार्सन और वन्नेवर बुश के आवेग के अनुसार रैखिक सर्किट में यात्रियों की गणना।

हीविसाइड के परिचालन तरीकों का कठोर गणितीय औचित्य केवल आया थॉमस जॉन आई'अनसन ब्रोमविच के काम के बाद जो संक्रियात्मक कलन से संबंधित था लाप्लास परिवर्तन के तरीके (विस्तृत विवरण के लिए जेफरीज़, कार्सलॉ या मैकलाचलन द्वारा पुस्तकें देखें)। 1920 के दशक के मध्य में हीविसाइड के संचालन के तरीकों को सही ठहराने के अन्य तरीके प्रस्तुत किए गए थे अभिन्न समीकरण विधि (जैसा कि कार्सन द्वारा किया गया) या फूरियर रूपांतरण (जैसा कि नॉर्बर्ट वीनर द्वारा किया गया)।

1930 के दशक में पोलिश गणितज्ञ द्वारा परिचालन कलन के लिए अलग दृष्टिकोण विकसित किया गया था जन मिकुसिन्स्की, बीजगणितीय तर्क का उपयोग करते हुए।

नॉर्बर्ट वीनर ने 1926 में ऑपरेशनल कैलकुलस की अस्तित्वगत स्थिति की अपनी समीक्षा में ऑपरेटर सिद्धांत की नींव रखी:[6]

हीविसाइड का शानदार काम विशुद्ध रूप से अनुमानी है, यहां तक ​​कि गणितीय कठोरता के ढोंग से भी रहित है। इसके संचालक विद्युत वोल्टेज और धाराओं पर प्रयुक्त होते हैं, जो बंद हो सकते हैं और निश्चित रूप से विश्लेषणात्मक होने की आवश्यकता नहीं है। उदाहरण के लिए, पसंदीदा कॉर्पस विले जिस पर वह अपने ऑपरेटरों की कोशिश करता है वह हैवीसाइड स्टेप फलन है जो मूल के बाईं ओर गायब हो जाता है और दाईं ओर 1 है। यह Pincherle की विधियों के किसी भी प्रत्यक्ष अनुप्रयोग को बाहर करता है ...
यद्यपि हीविसाइड के विकास को ऑपरेटरों के विशुद्ध गणितीय सिद्धांत की वर्तमान स्थिति द्वारा उचित नहीं ठहराया गया है, किन्तु हम उनकी वैधता के प्रायोगिक साक्ष्य कह सकते हैं, और वे विद्युत इंजीनियरों के लिए बहुत मूल्यवान हैं। चूंकि, ऐसे स्थिति हैं जहां वे अस्पष्ट या विरोधाभासी परिणाम देते हैं।

सिद्धांत

संक्रियात्मक कलन का प्रमुख तत्व समय व्युत्पन्न को संकारक (गणित) p = के रूप में मानना ​​है d/dt फलन (गणित) पर कार्य करना। फिर रेखीय अवकल समीकरणों को फलनों के रूप में फिर से ढाला जा सकता है {{math|F(p)}ज्ञात फलन के समान्तर अज्ञात फलन पर कार्यरत ऑपरेटर p का }। यहाँ, F कुछ ऐसा परिभाषित कर रहा है जो ऑपरेटर पी लेता है और दूसरा ऑपरेटर देता है F(p). तब का व्युत्क्रम संकारक बनाकर समाधान प्राप्त किए जाते हैं F ज्ञात कार्य पर कार्य करें। संक्रियात्मक कलन सामान्यतः दो प्रतीकों, संचालिका p, और हीविसाइड चरण फलन 1 द्वारा प्ररूपित किया जाता है। इसके प्रयोग में संकारक संभवतः भौतिक की तुलना में अधिक गणितीय है, इकाई कार्य गणितीय की तुलना में अधिक भौतिक है। हीविसाइड कैलकुस में ऑपरेटर पी प्रारंभ में समय विभेदक का प्रतिनिधित्व करना है d/dt. इसके अतिरिक्त, यह वांछित है कि यह ऑपरेटर पारस्परिक संबंध रखता है जैसे कि पी−1 एकीकरण के संचालन को दर्शाता है।[5]

विद्युत परिपथ सिद्धांत में, आवेग के लिए विद्युत परिपथ की प्रतिक्रिया निर्धारित करने का प्रयास किया जाता है। रैखिकता के कारण, इकाई कदम पर विचार करना पर्याप्त है:

हेविसाइड स्टेप फलन: H(t) जैसे कि H(t) = 0 यदि t < 0 और H(t) = 1 यदि t > 0।

परिचालन कलन के अनुप्रयोग का सबसे सरल उदाहरण हल करना है: p y = H(t), जो देता है

.

इस उदाहरण से, कोई यह देखता है अभिन्न का प्रतिनिधित्व करता है। आगे n पुनरावृत्त एकीकरण द्वारा दर्शाया गया है जिससे कि

पी का इलाज करना जारी रखना जैसे कि यह चर था,

जिसे ज्यामितीय श्रृंखला विस्तार का उपयोग करके फिर से लिखा जा सकता है,

आंशिक अंश अपघटन का उपयोग करके, ऑपरेटर पी में किसी भी अंश को परिभाषित किया जा सकता है और इसकी क्रिया की गणना की जा सकती है H(t). इसके अतिरिक्त, यदि फलन 1/F(p) के रूप का श्रृंखला विस्तार है

इसे खोजना सरल है

इस नियम को प्रयुक्त करते हुए, किसी भी रेखीय अवकल समीकरण को हल करना विशुद्ध रूप से बीजगणितीय समस्या में बदल जाता है।

हीविसाइड आगे चला गया, और पी की भिन्नात्मक शक्ति को परिभाषित किया, इस प्रकार परिचालन कलन और भिन्नात्मक कलन के बीच संबंध स्थापित किया।

टेलर विस्तार का उपयोग करके, लैग्रेंज-बूले शिफ्ट ऑपरेटर को भी सत्यापित किया जा सकता है, ea p f(t) = f(t + a), इसलिए परिचालन कैलकुलस परिमित अंतर समीकरणों और विलंबित संकेतों के साथ इलेक्ट्रिकल इंजीनियरिंग समस्याओं पर भी प्रयुक्त होता है।

संदर्भ


बाहरी संबंध