स्पेक्ट्रोरेडियोमीटर

From Vigyanwiki

स्पेक्ट्रोरेडियोमीटर एक प्रकाश मापक उपकरण है जो प्रकाश स्रोत से उत्सर्जित प्रकाश की तरंग दैर्ध्य और आयाम दोनों को मापने में सक्षम है। स्पेक्ट्रोमीटर संसूचक सरणी पर प्रकाश विवरण की स्थिति के आधार पर तरंग दैर्ध्य में विभेदन करते हैं जिससे पूर्ण स्पेक्ट्रम को एकल अधिग्रहण के साथ प्राप्त किया जा सके। अधिकांश स्पेक्ट्रोमीटर में गणनाओं का एक आधार माप होता है जो कि गैर-अंशांकित रीडिंग है और इस प्रकार संसूचक की संवेदनशीलता से प्रत्येक तरंग दैर्ध्य पर प्रभाव पड़ता है। अंशांकन लागू करके, स्पेक्ट्रोमीटर वर्णक्रमीय विकिरण, वर्णक्रमीय चमक और/या वर्णक्रमीय प्रवाह के माप प्रदान करने में सक्षम है। इस डेटा का उपयोग तब अंतर्निहित या पीसी सॉफ़्टवेयर और कई एल्गोरिदम के साथ रीडिंग या इरैडियंस (डब्ल्यू / सेमी 2), इलुमिनेंस (लक्स या एफसी), रेडियंस (डब्ल्यू / एसआर), ल्यूमिनेंस (सीडी), फ्लक्स (लुमेन या वाट) प्रदान करने के लिए किया जाता है।), वार्णिकता, रंग तापमान, शिखर और प्रमुख तरंगदैर्ध्य। कुछ और जटिल स्पेक्ट्रोमीटर सॉफ्टवेयर संकुल भी दूरी के आधार पर पीएआर μmol/m2/s, मेटामेरिज्म, और कैंडीला 2 और 20 डिग्री पर्यवेक्षक, बुनियादी ओवरले तुलना, ट्रांसमिशन और प्रतिबिंब जैसे अभिकलन और सुविधाओं की अनुमति देता है।

स्पेक्ट्रोमीटर कई संकुल और आकारों में उपलब्ध हैं जो कई तरंग दैर्ध्य सीमा का आवरण करते हैं। स्पेक्ट्रोमीटर की प्रभावी तरंग दैर्ध्य (स्पेक्ट्रल) सीमा न केवल झंझरी प्रसार क्षमता से निर्धारित होती है बल्कि संसूचकों की संवेदनशीलता सीमा पर भी निर्भर करती है। अर्धचालक के बैंड गैप द्वारा सीमित सिलिकॉन-आधारित संसूचक 200-1100 एनएम पर प्रतिक्रिया करता है जबकि इनगैस आधारित संसूचक 900-1700 एनएम (या शीतलन के साथ 2500 एनएम तक) के प्रति संवेदनशील है।

प्रयोगशाला/शोध स्पेक्ट्रमीटर अक्सर यूवी से एनआईआर तक एक व्यापक वर्णक्रमीय सीमा को आवरण करते हैं और एक पीसी की आवश्यकता होती है। आईआर स्पेक्ट्रोमीटर भी हैं जिन्हें कूलिंग सिस्टम चलाने के लिए उच्च शक्ति की आवश्यकता होती है। कई स्पेक्ट्रोमीटर को एक विशिष्ट सीमा यानी यूवी, या विज़ के लिए अनुकूलित किया जा सकता है और अधिक सटीक माप, बेहतर रिज़ॉल्यूशन की अनुमति देने और ब्रॉडबैंड सिस्टम में पाई जाने वाली कुछ अधिक सामान्य त्रुटियों जैसे कि गुमराह प्रकाश और संवेदनशीलता की कमी को दूर करने के लिए दूसरी प्रणाली के साथ जोड़ा जा सकता है।

संवहन उपकरण एनआईआर को यूवी आवरण करने वाली कई वर्णमाला श्रेणियों के लिए भी उपलब्ध है और कई विभिन्न संकुल शैलियों और आकार प्रस्तुत करता है। एकीकृत डिस्प्ले वाले हैंड हेल्ड सिस्टम में आमतौर पर प्रकाशिकी और प्री-प्रोग्राम्ड सॉफ्टवेयर के साथ ऑनबोर्ड कंप्यूटर होता है। मिनी स्पेक्ट्रोमीटर का उपयोग हाथ से या लैब में भी किया जा सकता है क्योंकि वे एक पीसी द्वारा संचालित और नियंत्रित होते हैं और एक यूएसबी केबल की आवश्यकता होती है। इनपुट प्रकाशिकी को शामिल किया जा सकता है या आमतौर पर एक फाइबर ऑप्टिक प्रकाश गाइड द्वारा संलग्न किया जाता है। एक चौथाई से छोटे माइक्रो स्पेक्ट्रोमीटर भी हैं जिन्हें एक सिस्टम में एकीकृत किया जा सकता है, या अकेले इस्तेमाल किया जा सकता है।

पृष्ठभूमि

स्पेक्ट्रोरेडियोमेट्री का क्षेत्र संकीर्ण तरंग दैर्ध्य अंतरालों में पूर्ण रेडियोमेट्रिक मात्राओं के मापन से संबंधित है।[1] संकीर्ण बैंडविड्थ और तरंग दैर्ध्य वृद्धि के साथ स्पेक्ट्रम का नमूना लेना उपयोगी होता है क्योंकि कई स्रोतों में रेखा संरचनाएं होती हैं [2] स्पेक्ट्रोरेडियोमेट्री में अक्सर, वर्णक्रमीय विकिरण वांछित माप होता है। अभ्यास में औसत वर्णक्रमीय विकिरण को मापा जाता है, जिसे गणितीय रूप से सन्निकटन के रूप में दिखाया जाता है:

जहाँ वर्णक्रमीय विकिरण है, स्रोत का दीप्तिमान प्रवाह है (एसआई इकाई: वाट, डब्ल्यू) एक तरंग दैर्ध्य अंतराल (एसआई इकाई: मीटर, एम) के भीतर, सतह क्षेत्र पर घटना, (एसआई इकाई: वर्ग मीटर, मी2)। स्पेक्ट्रल विकिरण के लिए एसआई इकाई डब्ल्यू/एम3 है। हालांकि यह अक्सर नैनोमीटर में सेंटीमीटर और तरंग दैर्ध्य के मामले में क्षेत्र को मापने के लिए अधिक उपयोगी होता है, इस प्रकार वर्णक्रमीय विकिरण की एसआई इकाइयों के उप-गुणकों का उपयोग किया जाएगा, उदाहरण के लिए μW/cm2*nm[3]

वर्णक्रमीय विकिरण सामान्य रूप से सतह पर बिंदु से बिंदु तक भिन्न होता है। व्यवहार में, यह ध्यान रखना महत्वपूर्ण है कि रेडिएंट फ्लक्स दिशा के साथ कैसे भिन्न होता है, सतह पर प्रत्येक बिंदु पर स्रोत द्वारा उपशीर्षित ठोस कोण का आकार और सतह का अभिविन्यास। इन विचारों को देखते हुए, इन निर्भरताओं [3] के हिसाब से समीकरण के अधिक कठोर रूप का उपयोग करना अक्सर अधिक विवेकपूर्ण होता है[3]

ध्यान दें कि उपसर्ग "स्पेक्ट्रल" को "वर्णक्रमीय एकाग्रता" वाक्यांश के संक्षिप्त नाम के रूप में समझा जाना है जिसे सीआईई द्वारा समझा और परिभाषित किया गया है। "श्रेणी द्वारा दी गई तरंगदैर्घ्य के दोनों ओर एक अतिसूक्ष्म श्रेणी में ली गई रेडियोमेट्रिक मात्रा का भाग"।[4]

वर्णक्रमीय विद्युत वितरण

किसी स्रोत का स्पेक्ट्रल पावर डिस्ट्रीब्यूशन (एसपीडी) वर्णन करता है कि एक विशेष तरंग दैर्ध्य और क्षेत्र में कितना प्रवाह सेंसर तक पहुंचता है। यह प्रभावी ढंग से मापी जा रही रेडियोमेट्रिक मात्रा में प्रति-तरंग दैर्ध्य योगदान को व्यक्त करता है। किसी स्रोत के एसपीडी को आमतौर पर एसपीडी वक्र के रूप में दिखाया जाता है। एसपीडी वक्र प्रकाश स्रोत की रंग विशेषताओं का एक दृश्य प्रतिनिधित्व प्रदान करते हैं, जो दृश्यमान स्पेक्ट्रम में विभिन्न तरंग दैर्ध्य पर स्रोत द्वारा उत्सर्जित उज्ज्वल प्रवाह दिखाते हैं [5] यह एक मीट्रिक भी है जिसके द्वारा हम प्रकाश स्रोत की रंगों को प्रस्तुत करने की क्षमता का मूल्यांकन कर सकते हैं, अर्थात्, क्या एक निश्चित रंग उत्तेजना किसी दिए गए रोशनी के तहत ठीक से प्रस्तुत की जा सकती है।

तापदीप्त प्रकाश बल्ब (बाएं) और एक फ्लोरोसेंट लैंप (दाएं) के लिए विशेषता वर्णक्रमीय बिजली वितरण (एसपीडी)। क्षैतिज अक्ष नैनोमीटर में हैं और ऊर्ध्वाधर अक्ष मनमाना इकाइयों में सापेक्ष तीव्रता दिखाते हैं।

त्रुटि के स्रोत

किसी दिए गए स्पेक्ट्रोरेडियोमेट्रिक सिस्टम की गुणवत्ता उसके इलेक्ट्रॉनिक्स, ऑप्टिकल घटकों, सॉफ्टवेयर, बिजली की आपूर्ति और अंशांकन का एक कार्य है। आदर्श प्रयोगशाला स्थितियों के तहत और उच्च प्रशिक्षित विशेषज्ञों के साथ माप में छोटी (कुछ दसवें से कुछ प्रतिशत) त्रुटियां प्राप्त करना संभव है। हालांकि, कई व्यावहारिक स्थितियों में, 10 प्रतिशत के क्रम में त्रुटियों की संभावना होती है [3] भौतिक माप लेते समय कई प्रकार की त्रुटियां होती हैं। माप की सटीकता के सीमित कारकों के रूप में नोट की गई त्रुटि के तीन मूल प्रकार यादृच्छिक, व्यवस्थित और आवधिक त्रुटियां हैं[6]

  • यादृच्छिक त्रुटियाँ उस माध्य के बारे में विविधताएँ हैं। स्पेक्ट्रोरेडियोमेट्रिक माप के मामले में, इसे संसूचक, आंतरिक इलेक्ट्रॉनिक्स, या प्रकाश स्रोत से शोर के रूप में सोचा जा सकता है। इस प्रकार की त्रुटियों को लंबे समय तक एकीकरण समय या एकाधिक स्कैन द्वारा मुकाबला किया जा सकता है।
  • व्यवस्थित त्रुटियां अनुमानित "सही" मान के लिए ऑफ़सेट हैं। व्यवस्थित त्रुटियां आम तौर पर इन मापों के मानवीय घटक, स्वयं उपकरण या प्रयोग की स्थापना के कारण होती हैं। अंशांकन त्रुटियां, अवांछित प्रकाश और गलत सेटिंग्स जैसी चीजें, सभी संभावित मुद्दे हैं।
  • आवर्ती आवधिक या छद्म आवधिक घटनाओं से आवधिक त्रुटियां उत्पन्न होती हैं। तापमान, आर्द्रता, वायु-गति, या एसी हस्तक्षेप में बदलाव सभी को आवधिक त्रुटि के रूप में वर्गीकृत किया जा सकता है।[6]

त्रुटि के इन सामान्य स्रोतों के अलावा, स्पेक्ट्रोरेडियोमेट्री में त्रुटि के कुछ अधिक विशिष्ट कारणों में शामिल हैं:

  • माप की बहुआयामीता। आउटपुट सिग्नल कई कारकों पर निर्भर है, जिसमें मापा प्रवाह की परिमाण, इसकी दिशा, इसका ध्रुवीकरण और इसकी तरंग दैर्ध्य वितरण शामिल है।
  • मापने के उपकरणों की अशुद्धि, साथ ही उक्त उपकरणों को कैलिब्रेट करने के लिए उपयोग किए जाने वाले मानक, संपूर्ण माप प्रक्रिया के दौरान एक बड़ी त्रुटि बनाने के लिए कैस्केड किए गए, और
  • बहुआयामी और उपकरण अस्थिरता त्रुटि को कम करने के लिए मालिकाना तकनीक।[3]

गामा-साइंटिफिक, कैलिफोर्निया स्थित प्रकाश माप उपकरणों का निर्माता, अपने स्पेक्ट्रोरेडियोमीटर की सटीकता और प्रदर्शन को प्रभावित करने वाले सात कारकों को सूचीबद्ध करता है, या तो सिस्टम अंशांकन, सॉफ्टवेयर और बिजली की आपूर्ति, प्रकाशिकी, या स्वयं मापन इंजन के कारण होता है।[7]

परिभाषाएँ

अवांछित प्रकाश

अवांछित प्रकाश अवांछित तरंग दैर्ध्य विकिरण है जो गलत संसूचक तत्व तक पहुंचता है। यह गलत इलेक्ट्रॉनिक गणना उत्पन्न करता है जो पिक्सेल या संसूचक सरणी के तत्व के लिए डिज़ाइन किए गए स्पेक्ट्रल सिग्नल से संबंधित नहीं है। यह प्रकाश बिखराव और अपूर्ण ऑप्टिकल तत्वों के प्रतिबिंब के साथ-साथ उच्च आदेश विवर्तन प्रभाव से आ सकता है। संसूचक से पहले क्रम वर्गीकरण निस्यंदक स्थापित करके, दूसरे ऑर्डर प्रभाव को हटाया जा सकता है या कम से कम नाटकीय रूप से कम किया जा सकता है।

ए सी संसूचक दृश्यमान और एनआईआर के प्रति संवेदनशीलता यूवी रेंज की तुलना में लगभग परिमाण का एक क्रम है। इसका मतलब यह है कि यूवी वर्णक्रमीय स्थिति में पिक्सेल अपने स्वयं के डिज़ाइन किए गए वर्णक्रमीय संकेत की तुलना में दृश्य और एनआईआर में अवांछित प्रकाश का अधिक दृढ़ता से जवाब देते हैं। इसलिए, दृश्यमान और एनआईआर पिक्सेल की तुलना में यूवी क्षेत्र में अवांछित प्रकाश प्रभाव बहुत अधिक महत्वपूर्ण हैं। यह स्थिति तरंगदैर्घ्य जितनी कम होती जाती है, उतनी ही खराब होती जाती है।

जब यूवी संकेतों के छोटे अंश के साथ ब्रॉड बैंड लाइट को मापते हैं, तो कभी-कभी यूवी रेंज में अवांछित प्रकाश प्रभाव प्रभावी हो सकता है क्योंकि संसूचक पिक्सेल स्रोत से पर्याप्त यूवी सिग्नल प्राप्त करने के लिए पहले से ही संघर्ष कर रहे हैं। इस कारण से, क्यूटीएच मानक लैंप का उपयोग कर अंशांकन में 350 एनएम से नीचे भारी त्रुटियां (100% से अधिक) हो सकती हैं और इस क्षेत्र में अधिक सटीक अंशांकन के लिए ड्यूटेरियम मानक लैंप की आवश्यकता होती है। वास्तव में, यूवी क्षेत्र में पूर्ण प्रकाश मापन में सही अंशांकन के साथ भी बड़ी त्रुटियां हो सकती हैं, जब इन पिक्सेल में अधिकांश इलेक्ट्रॉनिक गणना अवांछित प्रकाश (वास्तविक यूवी प्रकाश के बजाय लंबी तरंग दैर्ध्य धर्षण) का परिणाम है।

अंशांकन त्रुटियां

कई कंपनियां हैं जो स्पेक्ट्रोमीटर के लिए अंशांकन की पेशकश करती हैं, लेकिन सभी समान नहीं हैं। अंशांकन करने के लिए पता लगाने योग्य, प्रमाणित प्रयोगशाला का पता लगाना महत्वपूर्ण है। अंशांकन प्रमाण पत्र में उपयोग किए जाने वाले प्रकाश स्रोत (उदाहरण: हलोजन, ड्यूटेरियम, क्सीनन, एलईडी) और प्रत्येक बैंड (यूवीसी, यूवीबी, विस..), एनएम में प्रत्येक तरंग दैर्ध्य या पूर्ण स्पेक्ट्रम मापे गए स्पेक्ट्रम के लिए अंशांकन की अनिश्चितता को वर्णित किया जाना चाहिए। इसे अंशांकन अनिश्चितता के लिए विश्वास स्तर को भी सूचीबद्ध करना चाहिए।

गलत सेटिंग्स

एक कैमरे की तरह, अधिकांश स्पेक्ट्रोमीटर उपयोगकर्ता को एकत्र किए जाने वाले नमूनों की एक्सपोज़र समय और मात्रा का चयन करने की अनुमति देते हैं। एकीकरण का समय और स्कैन की संख्या निर्धारित करना एक महत्वपूर्ण चरण है। बहुत लंबे समय तक एकीकरण का समय संतृप्ति का कारण बन सकता है। (कैमरा फोटो में यह एक बड़े सफेद धब्बे के रूप में दिखाई दे सकता है, जबकि स्पेक्ट्रोमीटर में यह डुबकी के रूप में दिखाई दे सकता है, या शिखर को काट सकता है) बहुत कम एकीकरण समय शोर के परिणाम पैदा कर सकता है (कैमरा फोटो में यह एक अंधेरा होगा या धुंधला क्षेत्र, जहां एक स्पेक्ट्रोमीटर में यह स्पाइकी या अस्थिर रीडिंग दिखाई दे सकती है)।

एक्सपोजर समय वह समय है जब माप के दौरान प्रकाश संवेदक पर पड़ता है। इस पैरामीटर को समायोजित करने से उपकरण की समग्र संवेदनशीलता बदल जाती है, जैसा कि कैमरे के लिए एक्सपोजर समय बदलने से होता है। न्यूनतम एकीकरण समय न्यूनतम .5 मिसे और अधिकतम 10 मिनट प्रति स्कैन के साथ अलग-अलग होता है। प्रकाश की तीव्रता के आधार पर एक व्यावहारिक सेटिंग 3 से 999 एमएस की सीमा में होती है।

एकीकरण समय को एक सिग्नल के लिए समायोजित किया जाना चाहिए जो अधिकतम संख्या से अधिक नहीं है (16-बिट सीसीडी में 65,536, 14-बिट सीसीडी में 16,384 है)। संतृप्ति तब होती है जब एकीकरण का समय बहुत अधिक होता है। विशिष्ट रूप से, अधिकतम का लगभग 85% का शिखर संकेत एक अच्छा लक्ष्य है और एक अच्छा एस/एन अनुपात प्राप्त करता है। (उदा: क्रमशः 60K गणना या 16K गणना)

स्कैन की संख्या इंगित करती है कि कितने मापों का औसत निकाला जाएगा। अन्य चीजें समान होने पर, एकत्रित स्पेक्ट्रा का सिग्नल-टू-शोर अनुपात (एसएनआर) औसतन स्कैन की संख्या एन के वर्गमूल से बेहतर होता है। उदाहरण के लिए, यदि 16 स्पेक्ट्रल स्कैन औसत हैं, तो एसएनआर एक स्कैन के 4 गुना अधिक सुधार करता है।

एस/एन अनुपात को इनपुट प्रकाश स्तर पर मापा जाता है जो स्पेक्ट्रोमीटर के पूर्ण पैमाने पर पहुंचता है। यह इस प्रकाश स्तर पर सिग्नल काउंट (आमतौर पर पूर्ण पैमाने पर) से आरएमएस (रूट मीन स्क्वायर) शोर का अनुपात है। इस शोर में डार्क नॉइज़ एनडी, शॉट नॉइज़ एनएस शामिल है जो इनपुट लाइट द्वारा उत्पन्न काउंट से संबंधित है और शोर को पढ़ता है। यह प्रकाश मापन के लिए स्पेक्ट्रोमीटर से प्राप्त किया जा सकने वाला सर्वोत्तम S/N अनुपात है।

यह कैसे काम करता है

स्पेक्ट्रोरेडियोमेट्रिक सिस्टम के आवश्यक घटक निम्नानुसार हैं:

  • इनपुट प्रकाशिकी जो स्रोत से विद्युत चुम्बकीय विकिरण एकत्र करते हैं (विसारक, लेंस, फाइबर ऑप्टिक प्रकाश गाइड)
  • एक प्रवेश द्वार भट्ठा, यह निर्धारित करता है कि स्पेक्ट्रोमीटर में कितना प्रकाश प्रवेश करेगा। एक छोटे स्लिट में अधिक रिज़ॉल्यूशन होता है, लेकिन समग्र संवेदनशीलता कम होती है
  • दूसरे क्रम के प्रभावों को कम करने के लिए ऑर्डर सॉर्टिंग निस्यंदक
  • कोलिमेटर प्रकाश को झंझरी या प्रिज्म की ओर निर्देशित करता है
  • प्रकाश के विक्षेपण के लिए झंझरी या प्रिज्म
  • प्रकाश को संसूचक पर संरेखित करने के लिए फोकसिंग प्रकाशिकी
  • एक डिटेक्टर, सीएमओएस सेंसर या सीसीडी सरणी
  • डेटा को परिभाषित करने और इसे स्टोर करने के लिए एक नियंत्रण और लॉगिंग सिस्टम।[8]

इनपुट प्रकाशिकी

एक स्पेक्ट्रोरेडियोमीटर के फ्रंट-एंड प्रकाशिकी में लेंस, विसारक और निस्यंदक शामिल होते हैं जो प्रकाश को संशोधित करते हैं क्योंकि यह पहली बार सिस्टम में प्रवेश करता है। रेडियंस के लिए एक संकीर्ण दृश्य क्षेत्र के साथ एक ऑप्टिक की आवश्यकता होती है। कुल प्रवाह के लिए एक एकीकृत क्षेत्र की आवश्यकता होती है। किरणन कोज्या संशोधन के लिए प्रकाशिकी की आवश्यकता होती है। इन तत्वों के लिए प्रयुक्त सामग्री यह निर्धारित करती है कि किस प्रकार का प्रकाश मापा जा सकता है। उदाहरण के लिए, यूवी माप लेने के लिए, सटीक यूवी माप सुनिश्चित करने के लिए ग्लास लेंस, ऑप्टिकल फाइबर, टेफ्लॉन डिफ्यूज़र, और बेरियम सल्फेट कोटेड इंटीग्रेटिंग स्फेयर के बजाय क्वार्ट्ज का उपयोग अक्सर किया जाता है।[8]

एकवर्णक

ज़ेर्नी-टर्नर एकवर्णक का आरेख।

किसी स्रोत का वर्णक्रमीय विश्लेषण करने के लिए, प्रत्येक तरंग दैर्ध्य पर एकवर्णी प्रकाश की आवश्यकता होगी ताकि प्रदीपक की एक स्पेक्ट्रम प्रतिक्रिया तैयार की जा सके। एक एकवर्णक का उपयोग स्रोत से तरंग दैर्ध्य का नमूना लेने के लिए किया जाता है और अनिवार्य रूप से एक एकवर्णी सिग्नल उत्पन्न करता है। यह अनिवार्य रूप से एक परिवर्तनशील फिल्टर है, जो मापा प्रकाश के पूर्ण स्पेक्ट्रम से एक विशिष्ट तरंग दैर्ध्य या तरंग दैर्ध्य के बैंड को चुनिंदा रूप से अलग और प्रसारित करता है और उस क्षेत्र के बाहर पड़ने वाले किसी भी प्रकाश को बाहर करता है।[9]

एक विशिष्ट एकवर्णक इसे प्रवेश और निकास स्लिट्स, संधानिक और फोकस प्रकाशिकी, और एक विवर्तन झंझरी या प्रिज्म जैसे तरंग दैर्ध्य-फैलाने वाले तत्व के उपयोग के माध्यम से प्राप्त करता है।[6] आधुनिक एकवर्णक्स विवर्तन झंझरी के साथ निर्मित होते हैं, और विवर्तन झंझरी का उपयोग लगभग विशेष रूप से स्पेक्ट्रोरेडियोमेट्रिक अनुप्रयोगों में किया जाता है। विवर्तन झंझरी उनकी बहुमुखी प्रतिभा, कम क्षीणन, व्यापक तरंग दैर्ध्य रेंज, कम लागत और अधिक निरंतर फैलाव के कारण बेहतर हैं।[9] सिंगल या डबल एकवर्णक्स का उपयोग अनुप्रयोग के आधार पर किया जा सकता है, डबल एकवर्णक्स आमतौर पर झंझरी के बीच अतिरिक्त फैलाव और चकरा देने के कारण अधिक सटीकता प्रदान करते हैं।[8]

संसूचक

फोटोमल्टीप्लायर

एक स्पेक्ट्रोराडीमीटर में उपयोग किया जाने वाला डिटेक्टर तरंग दैर्ध्य द्वारा निर्धारित किया जाता है जिस पर प्रकाश को मापा जा रहा है, साथ ही साथ माप की आवश्यक गतिशील सीमा और संवेदनशीलता। मूल स्पेक्ट्रोमापी डिटेक्टर प्रौद्योगिकी आम तौर पर तीन समूहों में से एक में आती है: फोटोमाइसेसिव डिटेक्टर (जैसे फोटो एमिसिव डिटेक्टर)। फोटोमल्टीप्लायर ट्यूब), अर्धचालक उपकरण (जैसे कि सिलिकॉन) या थर्मल डिटेक्टर (जैसे कि थर्मल डिटेक्टर) थर्मोपाइल।[10]

किसी दिए गए डिटेक्टर की वर्णक्रमीय प्रतिक्रिया इसकी मूल सामग्री से निर्धारित होती है। उदाहरण के लिए, फोटोमल्टीप्लायर ट्यूबों में पाए जाने वाले फोटोकैथोड कुछ तत्वों से सौर-अंधे होने के लिए निर्मित किए जा सकते हैं - यूवी के प्रति संवेदनशील और दृश्य या आईआर में प्रकाश के प्रति गैर-प्रतिक्रियाशील।[11]

सीसीडी (चार्ज कपल्ड डिवाइस) सरणियाँ आमतौर पर हजारों या लाखों अलग-अलग डिटेक्टर तत्वों (पिक्सेल के रूप में भी जाना जाता है) और सीएमओएस सेंसर के एक आयामी (रैखिक) या दो आयामी (क्षेत्र) सरणियाँ हैं। इनमें एक सिलिकॉन या इंगास आधारित मल्टीचैनल ऐरे डिटेक्टर शामिल है जो यूवी, दृश्यमान और निकट-इन्फ्रा लाइट को मापने में सक्षम है।

सीएमओएस (पूरक धातु ऑक्साइड सेमीकंडक्टर) सेंसर एक सीसीडी से भिन्न होते हैं जिसमें वे प्रत्येक फोटोोडीड में एक एम्पलीफायर जोड़ते हैं। इसे एक सक्रिय पिक्सेल संवेदक कहा जाता है क्योंकि एम्पलीफायर पिक्सेल का हिस्सा है। ट्रांजिस्टर स्विच रीडआउट के समय प्रत्येक फोटोडायोड को इंट्रापिक्सल एम्पलीफायर से जोड़ते हैं।

नियंत्रण और लॉगिंग सिस्टम

लॉगिंग सिस्टम अक्सर केवल एक पर्सनल कंप्यूटर होता है। प्रारंभिक सिग्नल प्रोसेसिंग में, सिग्नल को अक्सर नियंत्रण प्रणाली के उपयोग के लिए प्रवर्धित और परिवर्तित करने की आवश्यकता होती है। वांछित मेट्रिक्स और सुविधाओं का उपयोग सुनिश्चित करने के लिए एकवर्णक, संसूचक आउटपुट और कंप्यूटर के बीच संचार की लाइनों को अनुकूलित किया जाना चाहिए।[8]स्पेक्ट्रोरेडियोमेट्रिक सिस्टम के साथ शामिल वाणिज्यिक रूप से उपलब्ध सॉफ़्टवेयर अक्सर माप की आगे की गणना के लिए उपयोगी संदर्भ कार्यों के साथ संग्रहीत होते हैं, जैसे सीआईई रंग मिलान कार्य और वी वक्र।[12]

अनुप्रयोग

स्पेक्ट्रोमाडोमीटर का उपयोग कई अनुप्रयोगों में किया जाता है, और इसे विभिन्न प्रकार की विशिष्टताओं को पूरा करने के लिए बनाया जा सकता है। उदाहरण अनुप्रयोगों में शामिल हैं:

  • सौर यूवी और यूवीबी विकिरण
  • एलईडी माप
  • प्रदर्शन माप और अंशांकन
  • सीएफएल परीक्षण
  • ऑयल स्लिक्स का रिमोट डिटेक्शन[13]

संयंत्र अनुसंधान और विकास [14]

DIY बनाता है

तरंग दैर्ध्य को कैलिब्रेट करने के लिए एक सीएफएल लैंप का उपयोग करके, एक ऑप्टिकल डिस्क झंझरी और एक बुनियादी वेब कैमरा का उपयोग करके एक बुनियादी ऑप्टिकल स्पेक्ट्रोमीटर का निर्माण संभव है।[15] ज्ञात स्पेक्ट्रम के स्रोत का उपयोग कर एक अंशांकन फिर फोटो पिक्सेल की चमक की व्याख्या करके स्पेक्ट्रोमीटर को स्पेक्ट्रोरेडियोमीटर में बदल सकता है।[16] फोटो-टू-वैल्यू रूपांतरण में कुछ अतिरिक्त त्रुटि स्रोतों से एक DIY बिल्ड प्रभावित होता है: फोटोग्राफिक शोर (डार्क फ्रेम घटाव की आवश्यकता होती है) और सीसीडी-टू-फोटोग्राफ रूपांतरण में गैर-रैखिकता (संभवतः कच्चे छवि प्रारूप द्वारा हल)।[17]

यह भी देखें

संदर्भ

  1. Leslie D. Stroebel and Richard D. Zakia (1993). Focal Encyclopedia of Photography (3rd ed. ed.). Focal Press. p. 115. ISBN 0-240-51417-3
  2. Berns, Roy S. "Precision and Accuracy Measurements." Billmeyer and Saltzman's Principles of Color Technology. 3rd ed. New York: John Wiley & Sons, 2000. 97-100. Print
  3. 3.0 3.1 3.2 Kostkowski, Henry J. Reliable Spectroradiometry. La Plata, MD: Spectroradiometry Consulting, 1997. Print.
  4. Sanders, Charles L., and R. Rotter. The Spectroradiometric Measurement of Light Sources. Paris, France: Bureau Central De La CIE, 1984. Print.
  5. GE Lighting. "Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products." Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products. N.p., n.d. Web. 10 Dec. 2013. <"Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products". Archived from the original on 2013-12-14. Retrieved 2013-12-11.>
  6. 6.0 6.1 6.2 Schnedier, William E., and Richard Young, Ph.D. Spectroradiometry Methods. Application Note (A14). N.p., 1998. Web. <http://biology.duke.edu/johnsenlab/pdfs/tech/spectmethods.pdf>
  7. Gamma Scientific. "Seven Factors Affecting Spectroradiometer Accuracy and Performance." Gamma Scientific. N.p., n.d. Web. <http://www.gamma-sci.com/spectroradiometer-accuracy-performance/>.
  8. 8.0 8.1 8.2 8.3 Bentham Instruments Ltd. A Guide to Spectroradiometry: Instruments & Applications for the Ultraviolet. Guide. N.p., 1997. Web. <http://www.bentham.co.uk/pdf/UVGuide.pdf>
  9. 9.0 9.1 American Astronomical Society. "Study Notes: AAS Monochromator." Study Notes: AAS Monochromator. N.p., n.d. Web. 2013. <"Study Notes: AAS Monochromator". Archived from the original on 2013-12-11. Retrieved 2013-12-11.>.
  10. Ready, Jack. "Optical Detectors and Human Vision." Fundamentals of Photonics (n.d.): n. pag. SPIE. Web. <http://spie.org/Documents/Publications/00%20STEP%20Module%2006.pdf>.
  11. J. W. Campbell, "Developmental Solar Blind Photomultipliers Suitable for Use in the 1450–2800-Å Region," Appl. Opt. 10, 1232-1240 (1971) http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-10-6-1232
  12. Apogee Instruments. Spectroradiometer PS-100 (350 - 1000 Nm), PS-200 (300 - 800 Nm), PS-300 (300 - 1000 Nm). N.p.: Apogee Instruments, n.d. Apogee Instruments Spectroradiometer Manual. Web. <http://www.apogeeinstruments.com/content/PS-100_200_300manual.pdf>.
  13. Mattson, James S., Harry B. Mark Jr., Arnold Prostak, and Clarence E. Schutt. Potential Application of an Infrared Spectroradiometer for Remote Detection and Identification of Oil Slicks on Water. Tech. 5th ed. Vol. 5. N.p.: n.p., 1971. Print. Retrieved from <http://pubs.acs.org/doi/pdf/10.1021/es60052a004>
  14. McFarland, M and Kaye, J (1992) Chlorofluorocarbons and Ozone. Photochem. Photobiol. 55 (6) 911-929.
  15. "DIY स्पेक्ट्रोमीटर". Wired (in English).
  16. "PLab 3 Gain Correction". Public Lab.
  17. "शोर में कमी". Jonathan Thomson's web journal (in English). 26 October 2010.


बाहरी संबंध