बैकप्रेशर रूटिंग

From Vigyanwiki

पंक्तियन सिद्धांत में, प्रायिकता के गणितीय सिद्धांत के भीतर एक अनुशासन है जिसमें पश्चदाब परिसंचरण कलनविधि एक पंक्तियन नेटवर्क के ओर ट्रैफ़िक को निर्देशित करने की विधि है, जो अधिकतम नेटवर्क के संदेश प्रवाह प्राप्त करता है,[1] जिसे लायपुनोव ड्रिफ्ट की अवधारणाओं का उपयोग करके स्थापित किया गया है। पश्चदाब परिसंचरण उस स्थिति पर विचार करता है जहां प्रत्येक कार्य नेटवर्क में कई सर्विस नोड पर निरीक्षण कर सकता है। यह मैक्स-वेट शेड्यूलिंग(अधिकतम-भार नियोजन) का विस्तार है जहां प्रत्येक कार्य केवल एक सर्विस नोड पर निरीक्षण करता है।

परिचय

पश्चदाब परिसंचरण संकुलन प्रवणता का उपयोग करके बहुपद नेटवर्क पर गतिकत: ट्रैफ़िक के परिसंचरण के लिए एक कलनविधि है। कलनविधि वायरलेस संचार नेटवर्क पर लागू किया जा सकता है, जिसमें वायरलेस सेंसर नेटवर्क, मोबाइल एडहॉक नेटवर्क (एमएएनईटीएस) और वायरलेस और वायरलाइन घटकों के साथ विषमांगी जालक्रम सम्मिलित हैं।[2][3]

पश्चदाब सिद्धांतों को अन्य क्षेत्रों जैसे उत्पाद संयोजन तंत्र और प्रसंस्करण नेटवर्क के अध्ययन में भी प्रयुक्त किया जा सकता है।[4] यह लेख संचार नेटवर्क पर केंद्रित है, जहां विविध डेटा स्ट्रीम से पैकेट प्राप्त किए जाते हैं और उन्हें उपयुक्त गंतव्यों तक वितरण किया जाना चाहिए। पश्चदाब कलनविधि निर्धारित समय में संचालित होता है। प्रति समय खांचे में यह डेटा को उन दिशाओं में संचरण करने में प्रयत्न करता है जो निकटस्थ नोड के बीच डिफरेंशियल बैकलॉग (अंतरात्मक संचित कार्य) को अधिकतम करते हैं। यह उसी प्रकार है जिस प्रकार दबाव प्रवणताओं के माध्यम से पाइपों के एक नेटवर्क के माध्यम से जल प्रवाहित होता है। यद्यपि, पश्चदाब कलनविधि को बहु-पण्य नेटवर्क (जहां विभिन्न पैकेट के विभिन्न गंतव्य हो सकते हैं), और उन नेटवर्क पर प्रयुक्त किया जा सकता है जहां संचरण दरों को विकल्पों के एक समुच्चय (संभवतः समय-भिन्न) से चयन किया जा सकता है। पश्चदाब कलनविधि की आकर्षक विशेषताएं हैं: (i) यह अधिकतम नेटवर्क संदेश प्रवाह की ओर ले जाता है, (ii) यह समय-भिन्न नेटवर्क स्थितियों के लिए संभवतः सुदृढ़ है, (iii) इसे ट्रैफ़िक आगमन दर या चैनल स्थिति की संभावनाओं को जाने रहित परिपालित किया जा सकता है। यद्यपि, कलनविधि अधिक विलंब क्रमादेशन कर सकता है, और हस्तक्षेप वाले नेटवर्क में सटीक रूप से परिपालित करना कठिन हो सकता है। पश्चदाब के संशोधन जो विलंब को क्षीण करें और परिपालन को सरल बनाएं, वे विलंब में सुधार और वितरित पश्चदाब के अंतर्गत वर्णित हैं।

पश्चदाब परिसंचरण का मुख्य रूप से सैद्धांतिक संदर्भ में अध्ययन किया गया है। व्यवहार में, तदर्थ वायरलेस नेटवर्क में आमतौर पर शॉर्टेस्ट के आधार पर वैकल्पिक रूटिंग विधियों को लागू किया पथ संगणना या नेटवर्क बाढ़, जैसे तदर्थ तदर्थ ऑन-डिमांड दूरी वेक्टर रूटिंग| तदर्थ ऑन-डिमांड डिस्टेंस वेक्टर रूटिंग (AODV), भौगोलिक रूटिंग, और ExOR (वायरलेस नेटवर्क प्रोटोकॉल) (ExOR)। हालाँकि, बैकप्रेशर की गणितीय इष्टतमता गुण इसके उपयोग के हाल के प्रायोगिक प्रदर्शनों को प्रेरित किया है दक्षिणी कैलिफोर्निया विश्वविद्यालय में वायरलेस टेस्टबेड पर और उत्तरी कैरोलिना स्टेट यूनिवर्सिटी में।[5][6][7]

उत्पत्ति

मूल बैकप्रेशर एल्गोरिथम को टैसियुलास और एफ़्रेमाइड्स द्वारा विकसित किया गया था।[2]उन्होंने मल्टी-हॉप रूटिंग | मल्टी-हॉप पैकेट रेडियो नेटवर्क पर यादृच्छिक पैकेट आगमन और लिंक चयन विकल्पों के एक निश्चित सेट पर विचार किया। उनके एल्गोरिदम में अधिकतम-भार लिंक चयन चरण और अंतर बैकलॉग रूटिंग चरण शामिल था। बैकप्रेसर से संबंधित एक एल्गोरिदम, मल्टी-कमोडिटी कंप्यूटिंग के लिए डिज़ाइन किया गया नेटवर्क प्रवाह, Awerbuch और Leighton में विकसित किया गया था।[8] बैकप्रेशर एल्गोरिथम को बाद में नेली, मोडियानो और रोहर्स द्वारा मोबाइल नेटवर्क के लिए शेड्यूलिंग का इलाज करने के लिए बढ़ाया गया था।[9] बैकप्रेशर का गणितीय रूप से लाइपुनोव अनुकूलन के सिद्धांत के माध्यम से विश्लेषण किया जाता है, और नेटवर्क उपयोगिता अधिकतमकरण प्रदान करने के लिए प्रवाह नियंत्रण तंत्र के साथ संयुक्त रूप से उपयोग किया जा सकता है।[10][11][3][12][13] (यूटिलिटी ऑप्टिमाइज़ेशन और पेनल्टी न्यूनीकरण के साथ #बैकप्रेशर भी देखें)।

यह कैसे काम करता है

बैकप्रेशर रूटिंग को निर्णय लेने के लिए डिज़ाइन किया गया है जो (मोटे तौर पर) क्यू बैकलॉग के वर्गों के योग को कम करता है नेटवर्क में एक समयावधि से दूसरे समय तक। इस तकनीक का सटीक गणितीय विकास में वर्णित है बाद के खंड। यह खंड सामान्य नेटवर्क मॉडल और सम्मान के साथ बैकप्रेशर रूटिंग के संचालन का वर्णन करता है इस मॉडल को।

मल्टी-हॉप क्यूइंग नेटवर्क मॉडल

A 5-नोड मल्टीहॉप नेटवर्क
अंजीर। 1: एक 6-नोड मल्टीहॉप नेटवर्क। नोड्स के बीच तीर दिखाता है वर्तमान पड़ोसी।

एन नोड्स के साथ एक बहु-हॉप नेटवर्क पर विचार करें (एन = 6 के साथ उदाहरण के लिए चित्र 1 देखें)।

नेटवर्क में काम करता है स्लॉटेड समय . हर स्लॉट पर नया डेटा आ सकता है नेटवर्क, और रूटिंग और ट्रांसमिशन शेड्यूलिंग निर्णय लिए जाते हैं सभी डेटा को उसके उचित गंतव्य तक पहुंचाने के प्रयास में। नियत डेटा दें नोड के लिए कमोडिटी सी डेटा के रूप में लेबल किया जाना चाहिए। प्रत्येक नोड में डेटा को उसकी वस्तु के अनुसार संग्रहीत किया जाता है। के लिए और , होने देना नोड एन में कमोडिटी सी डेटा की वर्तमान मात्रा हो, जिसे क्यू बैकलॉग भी कहा जाता है। एक नोड के अंदर क्यू बैकलॉग का क्लोज़अप चित्र 2 में दिखाया गया है। की इकाइयां समस्या के संदर्भ पर निर्भर करता है। उदाहरण के लिए, बैकलॉग पैकेट की पूर्णांक इकाइयाँ ले सकता है, जो उन मामलों में उपयोगी होता है जब डेटा को निश्चित लंबाई के पैकेट में विभाजित किया जाता है। वैकल्पिक रूप से, यह बिट्स की वास्तविक मूल्यवान इकाइयां ले सकता है। यह मान लिया है कि सभी के लिए और सभी टाइम स्लॉट टी, क्योंकि कोई भी नोड डेटा को अपने लिए निर्धारित नहीं करता है। प्रत्येक टाइमलॉट, नोड दूसरों को डेटा संचारित कर सकते हैं। डेटा जो एक नोड से दूसरे नोड में प्रेषित होता है, उसे पहले नोड की कतार से हटा दिया जाता है और दूसरे नोड की कतार में जोड़ दिया जाता है। अपने डेस्टिनेशन पर ट्रांसमिट होने वाले डेटा को नेटवर्क से हटा दिया जाता है। डेटा भी बाहरी रूप से नेटवर्क में आ सकता है, और स्लॉट टी पर नोड एन में आने वाले नए डेटा की मात्रा के रूप में परिभाषित किया गया है जो अंततः होना चाहिए नोड सी को वितरित किया जाएगा।

होने देना स्लॉट टी पर लिंक (ए, बी) पर नेटवर्क द्वारा उपयोग की जाने वाली ट्रांसमिशन दर हो, यह वर्तमान स्लॉट पर नोड ए से नोड बी में स्थानांतरित किए जा सकने वाले डेटा की मात्रा का प्रतिनिधित्व करता है। होने देना संचरण दर मैट्रिक्स हो। इन संचरण दरों को संभवतः समय-भिन्न विकल्पों के एक सेट के भीतर चुना जाना चाहिए। विशेष रूप से, नेटवर्क में समय-भिन्न चैनल और नोड हो सकते हैं गतिशीलता, और यह इसकी संचरण क्षमताओं को हर स्लॉट को प्रभावित कर सकता है। इसे मॉडल करने के लिए, एस (टी) नेटवर्क की टोपोलॉजी स्थिति का प्रतिनिधित्व करते हैं, जो कैप्चर करता है स्लॉट टी पर नेटवर्क के गुण जो ट्रांसमिशन को प्रभावित करते हैं। होने देना सेट का प्रतिनिधित्व करें टोपोलॉजी राज्य एस (टी) के तहत उपलब्ध संचरण दर मैट्रिक्स विकल्प। प्रत्येक स्लॉट टी, नेटवर्क नियंत्रक एस (टी) को देखता है और ट्रांसमिशन चुनता है दरें सेट के भीतर . जिसका चुनाव आव्यूह प्रत्येक स्लॉट टी पर चयन करने के लिए अगले उपधारा में वर्णित किया गया है।

यह समय-भिन्न नेटवर्क मॉडल पहली बार मामले के लिए विकसित किया गया था जब प्रत्येक स्लॉट टी को चैनल राज्य मैट्रिक्स के सामान्य कार्यों और बिजली आवंटन मैट्रिक्स द्वारा निर्धारित किया गया था।[9] मॉडल का उपयोग तब भी किया जा सकता है जब दरें अन्य नियंत्रण निर्णयों द्वारा निर्धारित की जाती हैं, जैसे सर्वर आवंटन, उप-बैंड चयन, कोडिंग प्रकार, और इसी तरह। यह मानता है कि सहायक संचरण दर ज्ञात हैं और कोई संचरण त्रुटि नहीं है। बहु-रिसीवर विविधता के माध्यम से वायरलेस प्रसारण लाभ का फायदा उठाने वाले नेटवर्क सहित संभाव्य चैनल त्रुटियों वाले नेटवर्क के लिए बैकप्रेशर रूटिंग के विस्तारित फॉर्मूलेशन का उपयोग किया जा सकता है।[1]

बैकप्रेसर नियंत्रण निर्णय

प्रत्येक स्लॉट टी बैकप्रेशर नियंत्रक एस (टी) को देखता है और निम्नलिखित 3 चरणों का पालन करता है:

  • सबसे पहले, प्रत्येक लिंक (ए, बी) के लिए, यह एक इष्टतम वस्तु का चयन करता है उपयोग करने के लिए।
  • अगला, यह निर्धारित करता है कि क्या मैट्रिक्स में उपयोग करने के लिए।
  • अंत में, यह वस्तु की मात्रा निर्धारित करता है यह लिंक (ए, बी) पर संचारित होगा (ज्यादा से ज्यादा , लेकिन संभवतः कुछ मामलों में कम हो रहा है)।

इष्टतम वस्तु का चयन

प्रत्येक नोड अपनी कतार के बैकलॉग और अपने वर्तमान में बैकलॉग को देखता है पड़ोसियों। नोड ए का वर्तमान पड़ोसी एक नोड बी है जैसे कि इसे चुनना संभव है गैर-शून्य संचरण दर वर्तमान स्लॉट पर। इस प्रकार, पड़ोसियों को सेट द्वारा निर्धारित किया जाता है . चरम मामले में, ए नोड में पड़ोसी के रूप में सभी N − 1 अन्य नोड हो सकते हैं। हालाँकि, सेट का उपयोग करना आम है जो एक निश्चित भौगोलिक दूरी से अधिक अलग किए गए नोड्स के बीच प्रसारण को रोकते हैं, या जिसकी एक निश्चित सीमा के नीचे प्रचारित सिग्नल शक्ति होगी। इस प्रकार, यह पड़ोसियों की संख्या के लिए विशिष्ट है N − 1 से बहुत कम होना। चित्र 1 में उदाहरण पड़ोसियों को लिंक कनेक्शन द्वारा दिखाता है, ताकि नोड 5 में पड़ोसी 4 और 6 हों। उदाहरण पड़ोसियों के बीच एक सममित संबंध का सुझाव देता है (ताकि यदि 5, 4 का पड़ोसी हो, तो 4 5 का पड़ोसी है), लेकिन यह सामान्य रूप से मामला नहीं होना चाहिए।

किसी दिए गए बिंदु के निकटवर्तियों का सम्मुच्चय बर्हिगामी सम्बंध के सम्मुच्चय को निर्धारित करता है जिसका उपयोग वह वर्तमान व्याकरणिक स्थान पर संचारण के लिए कर सकता है। प्रत्येक बर्हिगामी सम्बंध के लिए इष्टतम पण्य को पण्य के रूप में परिभाषित किया गया है जो निम्नलिखित अवकल बैकलॉग मात्रा को अधिकतम करता है:

इष्टतम पण्य का चयन करने में किसी भी संबंध को स्वेच्छतः विघटित कर दिया जाता है।

A closeup of nodes 1 and 2. लिंक (1,2) पर भेजने के लिए इष्टतम वस्तु हरी वस्तु है।
अंजीर। 2: नोड 1 और 2 का क्लोजअप। लिंक (1,2) पर भेजने के लिए इष्टतम वस्तु हरी वस्तु है। दूसरी दिशा में भेजने के लिए इष्टतम वस्तु (लिंक (2,1) पर) नीली वस्तु है।

एक उदाहरण चित्र संख्या 2 में प्रदर्शित किया गया है। उदाहरण के लिए, वह कल्पना करता है कि प्रत्येक पंक्ति के पास वर्तमान में लाल, हरा और नीला केवल 3 पण्य हैं और इन्हें पैकेट की पूर्णांक इकाइयों में मापा जाता है। निर्देशित सम्बंध (1,2) पर ध्यान केंद्रित करने से अवकल बैकलॉग हैं:

इसलिए, व्याकरणिक स्थान t पर सम्बंध (1,2) प्रेषित करने के लिए इष्टतम पण्य का रंग हरा है। दूसरी ओर, व्याकरणिक स्थान t पर उत्क्रमित सम्बंध (2,1) प्रेषित करने के लिए इष्टतम पण्य का रंग नीला है।

μab(t) आव्यूह का चयन करना

एक बार प्रत्येक सम्बंध के लिए इष्टतम पण्य निर्धारित हो जाने पर नेटवर्क नियंत्रक निम्नलिखित भार की गणना करता है:

भार सम्बंध के लिए इष्टतम पण्य से संबद्ध अवकल बैकलॉग मान है, जो 0 से अधिकतम है। तत्पश्चात नियंत्रक निम्नलिखित अधिकतम-भार समस्या (स्वेच्छतः संबंधों को तोड़ना) के समाधान के रूप में संचारण दरों का चयन करता है:

अधिकतम-भार निर्णय के एक उदाहरण के रूप में मान लीजिए कि वर्तमान व्याकरणिक स्थान t पर 6 नेटवर्क बिंदु के प्रत्येक सम्बंध पर अवकल बैकलॉग द्वारा दिए गए संबद्ध भार की ओर जाता है:

जबकि सेट एक बेशुमार अनंत संख्या हो सकती है संभव संचरण दर मैट्रिसेस, सादगी के लिए मान लें कि वर्तमान टोपोलॉजी राज्य केवल 4 संभावितों को स्वीकार करता है विकल्प:

वर्तमान सांस्थिति स्थिति s(t) के अंतर्गत 4 संभावित संचरण दर चयनों का चित्रण। विकल्प (a) की संचरण दर के साथ एकल सम्बंध (1,5) को सक्रिय करता है। अन्य सभी विकल्प प्रत्येक सक्रिय सम्बंध पर 1 की संचारण दर के साथ दो सम्बंधों का प्रयोग करते हैं।

इन चार संभावनाओं को मैट्रिक्स रूप में निम्न द्वारा दर्शाया गया है:

ध्यान दें कि बिंदु 6 इनमें से किसी भी संभावना के अंतर्गत न तो प्रेषित कर सकता है और न ही प्राप्त कर सकता है। यह उत्पन्न हो सकता है क्योंकि वर्तमान में बिंदु 6 संचार सीमा से बाहर है। 4 संभावनाओं में से प्रत्येक के लिए दरों का भारित योग इस प्रकार है:

  • विकल्प (a): .
  • विकल्प (b): .
  • विकल्प (c): .
  • विकल्प (d): .

क्योंकि 12 के अधिकतम वजन के लिए एक टाई है, नेटवर्क नियंत्रक टाई को मनमाने ढंग से तोड़ सकता है कोई भी विकल्प चुनना या विकल्प .

रूटिंग वेरिएबल्स को अंतिम रूप देना

अब मान लीजिए कि इष्टतम वस्तुओं प्रत्येक लिंक और ट्रांसमिशन के लिए निर्धारित किया गया है दरें भी निर्धारित किया गया है। यदि दिए गए लिंक (ए, बी) पर इष्टतम वस्तु के लिए अंतर बैकलॉग ऋणात्मक है, तो कोई डेटा स्थानांतरित नहीं किया जाता है वर्तमान स्लॉट पर इस लिंक पर। अन्यथा, नेटवर्क भेजने की पेशकश करता है वस्तु की इकाइयाँ इस लिंक पर डेटा। यह रूटिंग वेरिएबल्स को परिभाषित करके किया जाता है प्रत्येक लिंक के लिए (ए, बी) और प्रत्येक वस्तु सी, जहां:

का मान है लिंक पर कमोडिटी सी डेटा को दी जाने वाली ट्रांसमिशन दर का प्रतिनिधित्व करता है (ए, बी) स्लॉट टी पर। हालाँकि, ट्रांसमिशन का समर्थन करने के लिए नोड्स के पास एक निश्चित वस्तु के लिए पर्याप्त नहीं हो सकता है उनके सभी आउटगोइंग लिंक्स पर प्रस्तावित दरों पर। यह नोड एन और कमोडिटी सी के लिए स्लॉट टी पर उत्पन्न होता है यदि:

इस मामले में, सभी डेटा भेजा जाता है, और अशक्त डेटा का उपयोग प्रस्तावित दरों के अप्रयुक्त भागों को भरने के लिए किया जाता है, संबंधित आउटगोइंग लिंक्स (प्रस्तावित दरों के अनुसार) पर मनमाने ढंग से वास्तविक डेटा और अशक्त डेटा आवंटित करना। इसे क्यू अंडरफ्लो स्थिति कहा जाता है। इस तरह के अंडरफ्लो थ्रूपुट को प्रभावित नहीं करते हैं या नेटवर्क की स्थिरता गुण। सहज रूप से, यह अंडरफ्लो के कारण है केवल तभी उत्पन्न होता है जब संचारण नोड में बैकलॉग की मात्रा कम होती है, जिसका अर्थ है नोड को अस्थिरता का खतरा नहीं है।

विलंब में सुधार

पश्चदाब कलनविधि किसी भी पूर्व-निर्दिष्ट पथ का उपयोग नहीं करता है। पथ गतिकत: अर्हत किए जाते हैं और विभिन्न पैकेटों के लिए भिन्न हो सकते हैं। विलंब अधिक विशाल हो सकता है, विशेष रूप से जब सिस्टम लघुभारित हो ताकि डेटा को गंतव्य की ओर प्रसारित करने के लिए पर्याप्त दबाव न हो। उदाहरण के लिए, मान लें कि एक पैकेट नेटवर्क में प्रवेश करता है और इसके अलावा कुछ भी प्रवेश नहीं करता है। यह पैकेट नेटवर्क के माध्यम से चक्कर लगा सकता है और अपने गंतव्य पर कभी आगमन नहीं हो सकता क्योंकि कोई दबाव प्रवणता नहीं बनती है। यह पश्चदाब की साद्यांत इष्टतमता या स्थिरता गुणों का खंडन नहीं करता है क्योंकि नेटवर्क में किसी भी समय अधिकतम एक पैकेट होता है और इसलिए तुच्छ रूप से स्थिर होता है (आगमन दर के समान 0 वितरण दर प्राप्त करना)।

पूर्व-निर्दिष्ट पथों के एक समुच्चय पर पश्चदाब परिपालित करना भी संभव है। यह क्षमता क्षेत्र को प्रतिबंधित कर सकता है, लेकिन व्यवस्थित वितरण और विलंब में सुधार कर सकता है। क्षमता क्षेत्र को प्रभावित किए बिना विलंब में सुधार करने का एक अन्य तरीका एक उन्नत संस्करण का उपयोग करना है जो लिंक भार को वांछित दिशाओं की ओर ले जाता है।[9] इस प्रकार के पूर्वाग्रह के अनुकरण ने महत्वपूर्ण विलंब सुधार दिखाया है।[1][3]ध्यान दें कि पंक्तिबद्ध में पश्चदाब के लिए क्रय क्रम मूल्यन विधि (एफआईएफओ) सेवा की आवश्यकता नहीं होती है। यह प्रेक्षित किया गया है कि क्रय उत्क्रम मूल्यन विधि (एलआईएफओ) सेवा संदेश प्रवाह को प्रभावित किए रहित, भारी बहुमत पैकेटों के लिए विलंब में नाटकीय रूप से सुधार कर सकती है।[7][14]

वितरित बैकप्रेशर

ध्यान दें कि संचरण दर चयनित होने पर, परिसंचरण निर्णय चर सामान्य वितरित प्रक्रिया से गणना की जा सकती है, जहां प्रत्येक नोड को केवल स्वयं और उनके प्रतिवेशियों के मध्य पंक्तिबद्ध संचित कार्य विभेदक के ज्ञान की आवश्यकता होती है। यद्यपि, संचरण दरों के चयन के लिए समीकरण (1)-(2) में अधिकतम-भार समस्या के समाधान की आवश्यकता होती है।विशेष स्थिति में जब चैनल लांबिक होते हैं, कलनविधि में एक प्राकृतिक वितरित कार्यान्वयन होता है और प्रत्येक नोड पर पृथक निर्णयों को न्यूनतम करता है। यद्यपि, अधिकतम-भार समस्या अंतर चैनल व्यतिकरण वाले नेटवर्क के लिए एक केंद्रीकृत नियंत्रण समस्या है। केंद्रीकृत प्रक्रिया से भी इसे हल करना अधिक कठिन हो सकता है।

सिग्नल-टू-नॉइज़-प्लस-इंटरफेरेंस अनुपात (एसआईएनआर) द्वारा निर्धारित लिंक दरों के साथ व्यतिकरण नेटवर्क के लिए एक वितरित दृष्टिकोण यादृच्छिककरण का उपयोग करके किया जा सकता है।[9] प्रत्येक नोड अव्यवस्थिततः प्रत्येक स्लॉट t को प्रसारित करने का निर्णय लेता है (यदि वर्तमान में प्रेषित करने के लिए पैकेट नहीं है तो "शून्य" पैकेट प्रेषण किया जाता है)। वास्तविक संचरण दर, और प्रेषित करने के लिए संबंधित वास्तविक पैकेट, 2-चरणीय हैंडशेक द्वारा निर्धारित किए जाते हैं: प्राथमिक चरण पर, अव्यवस्थिततः चयनित प्रेषक नोड वास्तविक संचरण के आनुपातिक संकेत सामर्थ्य के साथ एक पायलट संकेत प्रेषित करते हैं। द्वितीय चरण पर, सभी संभावित रिसीवर नोड परिणामी व्यतिकरण को मापते हैं और उस सूचना को पुनः प्रेषक को भेजते हैं। सभी आउटगोइंग लिंक (n, b) के लिए एसआईएनआर स्तर तब सभी नोड्स n के लिए ज्ञात होता है, और प्रत्येक नोड n इस सूचना के आधार पर अपने और चरों के निर्णय ले सकते हैं।  परिणामी संदेश प्रवाह आवश्यक रूप से इष्टतम नहीं है। यद्यपि, अव्यवस्थित संचरण प्रक्रिया को चैनल स्थिति प्रक्रिया के एक भाग के रूप में देखा जा सकता है (किंतु अशक्त पैकेट अंडरफ़्लो के स्थितियों में भेजे जाते हैं, ताकि चैनल स्थिति प्रक्रिया पूर्व निर्णयों पर निर्भर न हो)। इसलिए, इस वितरित कार्यान्वयन का परिणामी संदेश प्रवाह सभी परिसंचरण और अनुसूचीयन कलनविधि के वर्ग पर इष्टतम है जो इस प्रकार के यादृच्छिक प्रसारण का उपयोग करते हैं।

वैकल्पिक वितरित परिपालन को प्रायः दो वर्गों में विभाजित किया जा सकता है: कलनविधि की प्रथम श्रेणी अधिकतम-भार समस्या के निरंतर गुणक कारक अनुमानों पर विचार करती है, और निरंतर-कारक साद्यांत परिणाम उत्पन्न करती है। कलनविधि की द्वितीय श्रेणी समय के साथ अधिकतम-भार समस्या के समाधान को अद्यतन करने के आधार पर, अधिकतम-भार समस्या के योगात्मक अनुमानों पर विचार करती है।

इस द्वितीय श्रेणी में कलनविधि को स्थिर चैनल की स्थिति और दीर्घ (प्रायः गैर-बहुपद) अभिसरण समय की आवश्यकता हो सकती है, यद्यपि वे उपयुक्त धारणाओं के अंतर्गत अधिकतम साद्यांत प्राप्त कर सकते हैं।[15][4][13]अप्रचलित पंक्तिबद्ध संचित कार्य जानकारी के साथ परिपालित किए जाने पर पश्चदाब की इष्टतमता सिद्ध करने के लिए योगात्मक सन्निकटन प्रायः उपयोगी होते हैं (नीली पाठ का अभ्यास 4.10 देखें)।[13]

लयपुनोव बहाव के माध्यम से गणितीय निर्माण

यह भाग प्रदर्शित करता है कि एक व्याकरणिक स्थान से दूसरे व्याकरणिक स्थान में क्यू बैकलॉग के वर्गों के योग में परिवर्तन पर बाध्यता को कम करने के स्वाभाविक परिणाम के रूप में पश्चदाब एल्गोरिदम कैसे उत्पन्न होता है।[9][3]

नियंत्रण निर्णय बाध्यताएं और पंक्ति अद्यतन समीकरण

उपरोक्त खंड में वर्णित N बिंदु के साथ एक बहुपद नेटवर्क पर विचार करें। प्रत्येक व्याकरणिक स्थान t नेटवर्क नियंत्रक सांस्थिति स्थिति S(t) को प्रेक्षित करता है तथा निम्नलिखित बाधाओं के अधीन संचरण दर परिसंचरण चर राशि का चयन करता है:

एक बार परिसंचरण चर निर्धारित हो जाने के पश्चात ही प्रसारण किया जाता है (यदि आवश्यक हो तो निष्क्रिय भरण का उपयोग करके) तथा परिणामी क्यू बैकलॉग निम्नलिखित को संतुष्ट करते हैं:

जहाँ नए पण्य c डेटा की यादृच्छिक मात्रा है जो वाह्य रूप से व्याकरणिक स्थान t पर बिंदु n पर आता है और व्याकरणिक स्थान t से संबद्ध (एन, बी) पर पण्य c परिवहन के लिए आवंटित संचरण दर है। ध्यान दें कि पण्य c डेटा की मात्रा से अधिक हो सकता है जो वस्तुतः व्याकरणिक स्थान t से संबद्ध (a,b) पर प्रसारित होता है। ऐसा इसलिए है क्योंकि बिंदु n में पर्याप्त संचित कार्य नहीं हो सकता है। इसी कारण से समीकरण (6) एक समानता की जगह एक असमानता है क्योंकि व्याकरणिक स्थान t पर बिंदु n के लिए पण्य c के वास्तविक अंतर्जात आगमन से अधिक हो सकता है। समीकरण (6) की एक महत्वपूर्ण विशेषता यह है कि यद्यपि निर्णय चर क्यू बैकलॉग से स्वतंत्र रूप से चुने गए हों।

यह माना जाता है कि सभी व्याकरणिक स्थान t और सभी के लिए क्योंकि कोई क्रमित डेटा को स्वयं के लिए नियत नहीं करता है।

लायपुनोव बहाव

को वर्तमान क्यू बैकलॉग के आव्यूह के रूप में परिभाषित करें। निम्नलिखित गैर-नकारात्मक फलन को परिभाषित करें जिसे लायपुनोव फलन कहा जाता है:

यह क्यू बैकलॉग के वर्गों का योग है (तत्पश्चात विश्लेषण में सुविधा के लिए केवल 1/2 से गुणन )। उपरोक्त राशि सभी n, c के योग के समान है जैसे कि क्योंकि सभी और सभी व्याकरणिक स्थान t के लिए .

सशर्त लायपुनोव बहाव परिभाषित किया गया है:

ध्यान दें कि निम्नलिखित असमानता सभी , , के लिए प्रयुक्त होती है:

क्यू अद्यतन समीकरण (6) को अधिकोरन करके और उपरोक्त असमानता का उपयोग करके यह प्रदर्शित करना मुश्किल नहीं है कि सभी व्याकरणिक स्थान t के लिए तथा किसी भी कलनविधि के अंतर्गत संचारण और परिसंचरण चर और का चयन करने के लिए:[3]

जहां B एक परिमित स्थिरांक है जो आगमन के दूसरे क्षणों और संचरण दरों के अधिकतम संभव दूसरे क्षणों पर निर्भर करता है।

राशियों का स्विचन करके धारा को सीमित करना

पश्चदाब एल्गोरिदम को और S(t) प्रत्येक व्याकरणिक स्थान t का निरीक्षण करने के लिए रचना की गयी है तथा धारा बाध्य समीकरण (7) के दक्षिण पक्ष को न्यूनतम करने के लिए और का चयन करें। क्योंकि B और स्थिरांक हैं, इसलिए यह अधिकतम करने के लिए है:

जहाँ अधिकतमीकरण निर्णय को स्पष्ट करने के लिए अपेक्षा द्वारा परिमित योग को प्रेरित किया गया है। समयानुवर्ती रूप से एक अपेक्षा अधिकतमीकरण सिद्धांत द्वारा, उपरोक्त अपेक्षा को उसके अंदर के कार्य का अधिकतमीकरण करके बढाया जाता है (दिए गए प्रेक्षित , )। इस प्रकार, अधिकतम करने के लिए समीकरण (3) - (5) की बाध्यताओं के अधीन और का चयन करता है:

यह तत्काल स्पष्ट नहीं है कि कौन से निर्णय उपरोक्त को अधिकतम करते हैं। राशियों का स्विचन करके इसे स्पष्ट किया जा सकता है। वास्तव में, उपरोक्त व्यंजक नीचे के समान है:

भार को बिंदु a और b के मध्य पण्य c का वर्तमान अवकल बैकलॉग कहा जाता है। विचार यह है कि निर्णय चर का चयन किया जाए जिससे कि उपरोक्त भारित राशि को अधिकतम किया जा सके जहाँ भार अंतरात्मक बैकलॉग हैं। सहज रूप से इसका अर्थ है बड़े अंतर वाले बैकलॉग की दिशा में बड़ी दरों का आवंटन।

जब कभी भी हो तो स्पष्ट रूप से का चयन करना चाहिए। इसके अतिरिक्त, किसी विशेष सम्बन्ध के लिए दिए गए को यह प्रदर्शित करना मुश्किल नहीं है कि समीकरण (3) - (5) के अधीन इष्टतम चयन निम्नानुसार निर्धारित किए गए हैं: सर्वप्रथम पण्य खोजें जो सम्बंध के लिए अवकल बैकलॉग को अधिकतम करता है। यदि अधिकतमीकरण अवकल बैकलॉग सम्बंध के लिए नकारात्मक है, तो सम्बंध पर सभी वस्तुओं के लिए निर्दिष्ट करें। अन्यथा, पूरी लिंक दर आवंटित करें कमोडिटी को , और इस लिंक पर अन्य सभी वस्तुओं के लिए शून्य दर। इस विकल्प के साथ यह इस प्रकार है:

जहाँ व्याकरणिक स्थान t(0 के साथ अधिकतम) पर सम्बन्ध के लिए इष्टतम पण्य का अवकल बैकलॉग है:

केवल का चयन करना शेष है। यह निम्नलिखित को हल करके किया जाता है:

उपरोक्त समस्या समीकरण (1)-(2) में अधिकतम भार समस्या के समान है। पश्चदाब एल्गोरिदम के लिए अधिकतम भार निर्णय का उपयोग करता है तथा तत्पश्चात उपरोक्त वर्णित अधिकतम अवकल बैकलॉग के माध्यम से संचरण चर का चयन करता है।

बैकप्रेसर एल्गोरिथम की एक उल्लेखनीय संपत्ति यह है कि यह केवल देखी गई टोपोलॉजी स्थिति S(t) और क्यू बैकलॉग के आधार पर हर स्लॉट टी पर लालच से काम करता है। उस स्लॉट के लिए। इस प्रकार, इसे आगमन दर या सांस्थिति अवस्था की संभावनाओं के ज्ञान की आवश्यकता नहीं है।

प्रदर्शन विश्लेषण

यह भाग पश्चदाब एल्गोरिथम की साद्यांत इष्टतमता को सिद्ध करता है।[3][13]सरलता के लिए उस परिदृश्य पर विचार किया जाता है जहाँ घटनाएँ स्वतंत्र तथा व्याकरणिक स्थान पर समान रूप से वितरित (i.i.d.) होती हैं, हालाँकि समान कलनविधि को गैर-i.i.d परिदृश्यों में कार्य करने के लिए प्रदर्शित किया जा सकता है (गैर-i.i.d. ऑपरेशन और सार्वभौमिक अनुसूचीकरण के अंतर्गत नीचे देखें)।

गतिक आगमन

मान लें कि व्याकरणिक स्थान t पर बहिर्जात आगमन का आव्यूह है। मान लें कि यह आव्यूह स्वतंत्र और समान रूप से वितरित (i.i.d.) व्याकरणिक स्थान पर परिमित दूसरे क्षणों तथा साधनों के साथ है:

यह माना जाता है कि सभी के लिए क्योंकि स्वयं के लिए नियत कोई डेटा प्राप्त नहीं होता है। इस प्रकार, आगमन दर का आव्यूह विकर्ण पर शून्य के साथ गैर-ऋणात्मक वास्तविक संख्याओं का आव्यूह है।

नेटवर्क क्षमता क्षेत्र

मान लें कि टोपोलॉजी स्थिति S(t) i.i.d है। संभावनाओं के साथ स्लॉट्स पर (यदि एस (टी) वास्तविक मूल्यवान प्रविष्टियों वाले वैक्टरों के अनगिनत अनंत सेट में मान लेता है, तब संभाव्यता वितरण है, संभाव्यता द्रव्यमान समारोह नहीं)। नेटवर्क के लिए एक सामान्य एल्गोरिद्म S(t) प्रत्येक स्लॉट t को देखता है और ट्रांसमिशन दरों को चुनता है और रूटिंग चर Eq में बाधाओं के अनुसार। (3) - (5)। नेटवर्क क्षमता क्षेत्र सभी आगमन दर आव्यूहों के सेट का समापन है जिसके लिए एक कलनविधि मौजूद है जो नेटवर्क को स्थिर करता है। सभी कतारों की स्थिरता का अर्थ है कि नेटवर्क में ट्रैफ़िक की कुल इनपुट दर अपने गंतव्य तक पहुँचाए गए डेटा की कुल दर के समान है। यह दिखाया जा सकता है कि किसी भी आगमन दर मैट्रिक्स के लिए क्षमता क्षेत्र में , एक स्थिर और यादृच्छिक एल्गोरिदम है जो निर्णय चर चुनता है और प्रत्येक स्लॉट टी केवल एस (टी) पर आधारित है (और इसलिए क्यू बैकलॉग से स्वतंत्र) जो सभी के लिए निम्नलिखित देता है :[9][13]

इस तरह के एक स्थिर और यादृच्छिक एल्गोरिदम जो केवल एस (टी) पर निर्णय लेते हैं, एस-ओनली एल्गोरिदम कहलाते हैं। यह मान लेना अक्सर उपयोगी होता है का आंतरिक है , ताकि वहाँ एक है ऐसा है कि , कहाँ 1 है अगर , और शून्य। उस स्थिति में, एक एस-ओनली एल्गोरिथम है जो सभी के लिए निम्नलिखित उत्पन्न करता है :

तकनीकी आवश्यकता के रूप में, यह माना जाता है कि संचरण दर के दूसरे क्षण इन दरों को चुनने के लिए किसी भी एल्गोरिदम के तहत परिमित हैं। यह तुच्छ रूप से धारण करता है यदि कोई अधिकतम अधिकतम दर है .

केवल-एस एल्गोरिदम की तुलना

क्योंकि पश्चदाब कलनविधि और S(t) प्रत्येक व्याकरणिक स्थान t को देखता है और बाध्य धारा समीकरण (7) के दाहिने हाथ की ओर कम करने के लिए और निर्णय का चयन करता है। हमें प्राप्त है:

जहाँ और कोई वैकल्पिक निर्णय हैं जो समीकरण (3) - (5) को संतुष्ट करते हैं जिसमें यादृच्छिक निर्णय सम्मिलित हैं।

अब मान लीजिए। तब एक केवल-S एल्गोरिथम उपस्थित होता है जो समीकरण (8) को संतुष्ट करता है। इसे समीकरण (10) के दाईं ओर यह देखते हुए प्लग करना कि इस केवल-S एल्गोरिथम के अंतर्गत अशर्त अपेक्षा (क्योंकि S(t) i.i.d. स्लॉट्स पर है और S-only एल्गोरिथम वर्तमान क्यू बैकलॉग से स्वतंत्र है) के समान है:

इस प्रकार द्विघात लायपुनोव फलन का आशय सभी व्याकरणिक स्थान t के लिए नियतांक B से कम या उसके समान है। यह तथ्य इस धारणा के साथ है कि पंक्ति आगमन ने दूसरे क्षणों को सीमित कर दिया है, सभी नेटवर्क पंक्ति के लिए निम्नलिखित का अर्थ है:[16]

औसत कतार आकार की एक मजबूत समझ के लिए, आगमन दर मान सकते हैं के आंतरिक हैं , तो वहाँ एक है ऐसा है कि Eq। (9) किसी विकल्प के लिए है एस-केवल एल्गोरिदम। समीकरण (9) को समीकरण (10) के दाएँ पक्ष में लगाने पर यह प्राप्त होता है:

जिससे तत्काल प्राप्त हो जाता है (देखें[3][13]):

जैसे-जैसे क्षमता क्षेत्र की सीमा से दूरी शून्य हो जाती है, यह औसत पंक्ति आकार सीमा बढ़ जाती है। यह आगमन दर और सेवा दर के साथ एकल M/M/1 पंक्ति के समान गुणात्मक प्रदर्शन है जहां औसत पंक्ति का आकार के समानुपाती होता है जहां होता है।

उपरोक्त फॉर्मूलेशन के एक्सटेंशन

गैर-आई.आई.डी. ऑपरेशन और यूनिवर्सल शेड्यूलिंग

उपरोक्त विश्लेषण i.i.d. सादगी के लिए गुण। हालांकि, वही बैकप्रेशर एल्गोरिद्म गैर-आई.आई.डी. स्थितियों। जब आगमन प्रक्रियाएँ और टोपोलॉजी अवस्थाएँ एर्गोडिक होती हैं, लेकिन जरूरी नहीं कि i.i.d., बैकप्रेशर तब भी सिस्टम को स्थिर करता है जब भी .[9] अधिक आम तौर पर, एक सार्वभौमिक शेड्यूलिंग दृष्टिकोण का उपयोग करते हुए, यह यादृच्छिक (संभवतः गैर-एर्गोडिक) नमूना पथों के लिए स्थिरता और इष्टतम गुणों की पेशकश करने के लिए दिखाया गया है।[17]

यूटिलिटी ऑप्टिमाइज़ेशन और पेनल्टी मिनिमाइज़ेशन के साथ बैकप्रेशर

ड्रिफ्ट प्लस पेनल्टी|ड्रिफ्ट-प्लस-पेनल्टी तकनीक के माध्यम से बैकप्रेशर को प्रवाह नियंत्रण के संयोजन के साथ काम करने के लिए दिखाया गया है।[10][11][3] यह तकनीक लालच से बहाव की मात्रा और भारित जुर्माना अभिव्यक्ति को अधिकतम करती है। जुर्माना एक पैरामीटर V द्वारा भारित होता है जो एक प्रदर्शन ट्रेडऑफ़ निर्धारित करता है। यह तकनीक सुनिश्चित करती है कि थ्रूपुट उपयोगिता इष्टतमता के O(1/V) के भीतर है जबकि औसत विलंब O(V) है। इस प्रकार, उपयोगिता को मनमाने ढंग से इष्टतमता के करीब धकेला जा सकता है, औसत देरी में एक समान व्यापार के साथ। औसत शक्ति न्यूनीकरण के लिए समान गुण दिखाए जा सकते हैं[18] और अधिक सामान्य नेटवर्क विशेषताओं के अनुकूलन के लिए।[13]

नेटवर्क उपयोगिता को अधिकतम करते हुए कतारों को स्थिर करने के लिए वैकल्पिक एल्गोरिदम विकसित किए गए हैं द्रव मॉडल विश्लेषण का उपयोग करना,[12]संयुक्त द्रव विश्लेषण और लैग्रेंज गुणक विश्लेषण,[19] उत्तल अनुकूलन,[20] और स्टोकेस्टिक ग्रेडिएंट्स।[21] ये दृष्टिकोण O(1/V), O(V) उपयोगिता-विलंब परिणाम प्रदान नहीं करते हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 M. J. Neely and R. Urgaonkar, "Optimal Backpressure Routing in Wireless Networks with Multi-Receiver Diversity," Ad Hoc Networks (Elsevier), vol. 7, no. 5, pp. 862-881, July 2009.
  2. 2.0 2.1 L. Tassiulas and A. Ephremides, "Stability Properties of Constrained Queueing Systems and Scheduling Policies for Maximum Throughput in Multihop Radio Networks, IEEE Transactions on Automatic Control, vol. 37, no. 12, pp. 1936-1948, Dec. 1992.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 L. Georgiadis, M. J. Neely, and L. Tassiulas, "Resource Allocation and Cross-Layer Control in Wireless Networks," Foundations and Trends in Networking, vol. 1, no. 1, pp. 1-149, 2006.
  4. 4.0 4.1 L. Jiang and J. Walrand. Scheduling and Congestion Control for Wireless and Processing Networks, Morgan & Claypool, 2010.
  5. A. Sridharan, S. Moeller, and B. Krishnamachari, "Making Distributed Rate Control using Lyapunov Drifts a Reality in Wireless Sensor Networks," 6th Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), April 2008.
  6. A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, "DiffQ: Practical Differential Backlog Congestion Control for Wireless Networks," Proc. IEEE INFOCOM, Rio de Janeiro, Brazil, 2009.
  7. 7.0 7.1 S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali, "Routing Without Routes: The Backpressure Collection Protocol," Proc. 9th ACM/IEEE Intl. Conf. on Information Processing in Sensor Networks (IPSN), April 2010.
  8. B. Awerbuch and T. Leighton, "A Simple Local-Control Approximation Algorithm for Multicommodity Flow," Proc. 34th IEEE Conf. on Foundations of Computer Science, Oct. 1993.
  9. 9.0 9.1 9.2 9.3 9.4 9.5 9.6 M. J. Neely, E. Modiano, and C. E. Rohrs, "Dynamic Power Allocation and Routing for Time Varying Wireless Networks," IEEE Journal on Selected Areas in Communications, vol. 23, no. 1, pp. 89-103, January 2005.
  10. 10.0 10.1 M. J. Neely. Dynamic Power Allocation and Routing for Satellite and Wireless Networks with Time Varying Channels. Ph.D. Dissertation, Massachusetts Institute of Technology, LIDS. November 2003.
  11. 11.0 11.1 M. J. Neely, E. Modiano, and C. Li, "Fairness and Optimal Stochastic Control for Heterogeneous Networks," Proc. IEEE INFOCOM, March 2005.
  12. 12.0 12.1 A. Stolyar, "Maximizing Queueing Network Utility subject to Stability: Greedy Primal-Dual Algorithm," Queueing Systems, vol. 50, no. 4, pp. 401-457, 2005.
  13. 13.0 13.1 13.2 13.3 13.4 13.5 13.6 M. J. Neely. Stochastic Network Optimization with Application to Communication and Queueing Systems, Morgan & Claypool, 2010.
  14. L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari, "LIFO-Backpressure Achieves Near Optimal Utility-Delay Tradeoff," Proc. WiOpt, May 2011.
  15. E. Modiano, D. Shah, and G. Zussman, "Maximizing throughput in wireless networks via gossiping," Proc. ACM SIGMETRICS, 2006.
  16. M. J. Neely, "Queue Stability and Probability 1 Convergence via Lyapunov Optimization," Journal of Applied Mathematics, vol. 2012, doi:10.1155/2012/831909.
  17. M. J. Neely, "Universal Scheduling for Networks with Arbitrary Traffic, Channels, and Mobility," Proc. IEEE Conf. on Decision and Control (CDC), Atlanta, GA, Dec. 2010.
  18. M. J. Neely, "Energy Optimal Control for Time Varying Wireless Networks," IEEE Transactions on Information Theory, vol. 52, no. 7, pp. 2915-2934, July 2006
  19. A. Eryilmaz and R. Srikant, "Fair Resource Allocation in Wireless Networks using Queue-Length-Based Scheduling and Congestion Control," Proc. IEEE INFOCOM, March 2005.
  20. X. Lin and N. B. Shroff, "Joint Rate Control and Scheduling in Multihop Wireless Networks," Proc. of 43rd IEEE Conf. on Decision and Control, Paradise Island, Bahamas, Dec. 2004.
  21. J. W. Lee, R. R. Mazumdar, and N. B. Shroff, "Opportunistic Power Scheduling for Dynamic Multiserver Wireless Systems," IEEE Transactions on Wireless Communications, vol. 5, no.6, pp. 1506–1515, June 2006.


प्राथमिक स्रोत

  • एल. तस्सिउलास और ए. एफ़्रेमाइड्स, मल्टीहॉप रेडियो नेटवर्क में अधिकतम थ्रूपुट के लिए विवश क्यूइंग सिस्टम और शेड्यूलिंग नीतियों की स्थिरता गुण, स्वचालित नियंत्रण पर IEEE लेनदेन, वॉल्यूम। 37, नहीं. 12, पीपी. 1936-1948, दिसंबर 1992.
  • एल. जोर्जियाडिस, एम.जे. नीली, और एल. तासीउलास, संसाधन आवंटन और वायरलेस नेटवर्क में क्रॉस-लेयर नियंत्रण, नेटवर्किंग में नींव और रुझान, वॉल्यूम। 1, नहीं। 1, पीपी। 1–149, 2006।
  • एम जे नीली। स्टोचैस्टिक नेटवर्क ऑप्टिमाइजेशन विथ एप्लीकेशन टू कम्युनिकेशन एंड क्यूइंग सिस्टम्स, मॉर्गन एंड क्लेपूल, 2010।

श्रेणी:नेटवर्किंग एल्गोरिदम श्रेणी:पंक्ति सिद्धांत श्रेणी:रूटिंग एल्गोरिथम