टाइम-इनवेरिएंट सिस्टम

From Vigyanwiki
Revision as of 09:27, 26 October 2022 by alpha>Amreensaif
एक नियतात्मक निरंतर-समय एकल-इनपुट एकल-आउटपुट प्रणाली के लिए समय के परिवर्तन को दर्शाने वाला ब्लॉक आरेख। प्रणाली समय-अपरिवर्तनीय है यदि और केवल यदि हमेशा के लिए , सभी वास्तविक स्थिरांक के लिए और सभी इनपुट के लिए .[1][2][3] छवि को विस्तृत करने के लिए उस पर क्लिक करें।

नियंत्रण सिद्धांत में एक समय-अपरिवर्तनीय (TIV) प्रणाली के अंतर्गत एक समय-निर्भर प्रणालीय फलन होता है जो कि समय का प्रत्यक्ष फलन नहीं होता है। प्रणालीय विश्लेषण के क्षेत्र में ऐसी प्रणालियों को प्रणालियों कि एक श्रेणी माना जाता है। समय-निर्भर प्रणाली फलन समय-निर्भर आगत फलन का एक फलन है। यदि यह फलन मात्र अप्रत्यक्ष रूप से समय-अनुक्षेत्र (उदहारण के रूप में आगत फलन द्वारा) पर निर्भर होता है तो यह प्रणाली एक ऐसी प्रणाली होगी जो समय-अपरिवर्तनीय मानी जा सकती है। इसके विपरीत, समय-अनुक्षेत्र पर प्रत्यक्ष निर्भरता होने पर प्रणालीय फलन को "समय-परिवर्ती प्रणाली" माना जा सकता है।

गणितीय रूप से कहा जाए तो, एक प्रणाली की "समय-अपरिवर्तनीयता" निम्नलिखित गुण है:[4]: p. 50 

किसी ऐसी दी गयी प्रणाली, जिसका एक समय-निर्भर निर्गत फलन तथा एक समय-निर्भर आगत फलन हो तो वह प्रणाली समय-अपरिवर्तनीय मानी जाएगी यदि, आगत पर लागू का समय-विलम्ब प्रत्यक्ष रूप से निर्गत फलन के समय-विलम्ब के बराबर हो।
उदाहरण के लिए, यदि समय "व्यतीत-समय" है तो "समय-अपरिवर्तनीयता" यह कहती है कि आगत फलन तथा निर्गत फलन के बीच, समय के सन्दर्भ में, अपरिवर्ती सम्बन्ध है:

संकेत संसाधन की भाषा में यह गुण संतुष्ट किया जा सकता है यदि प्रणाली का अंतरित फलन प्रत्यक्ष रूप से समय का फलन न हो जिसमें आगत तथा निर्गत द्वारा अभिव्यक्त होना अपवाद है।

एक प्रणाली आरेख् के संदर्भ में, इस गुण को निम्नानुसार भी कहा जा सकता है, जैसा कि चित्र में दाईं ओर दिखाया गया है:

यदि एक प्रणाली समय-अपरिवर्ती है तो प्रणाली खण्ड एक स्वेच्छ विलम्ब के साथ संचालित होता है।

यदि एक समय-अपरिवर्तनीय प्रणाली भी रैखिक प्रणाली है, तो यह एनएमआर स्पेक्ट्रोस्कोपी, भूकंप विज्ञान, विद्युत नेटवर्क, सिग्नल प्रोसेसिंग, नियंत्रण सिद्धांत और अन्य तकनीकी क्षेत्रों में प्रत्यक्ष अनुप्रयोगों के साथ रैखिक समय-अपरिवर्तनीय सिद्धांत (रैखिक समय-अपरिवर्तनीय) का विषय है। नॉनलाइनियर प्रणाली समय-संस्करण प्रणाली में एक व्यापक, शासी सिद्धांत का अभाव है। असतत समय-अपरिवर्तनीय प्रणाली को शिफ्ट-अपरिवर्तनीय प्रणाली के रूप में जाना जाता है। जिन प्रणालियों में समय-अपरिवर्तनीय संपत्ति गुण का अभाव होता है, उनका अध्ययन समय-परिवर्ती प्रणालियों के रूप में किया जाता है।

सरल उदाहरण

यह प्रदर्शित करने के लिए कि कैसे यह निर्धारित किया जाए कि कोई प्रणाली समय-अपरिवर्तनीय है या नहीं, दो प्रणालियों पर विचार करें:

  • प्रणाली अ:
  • प्रणाली ब:

चूँकि प्रणाली अ के लिए प्रणाली फलन स्पष्ट रूप से के बाहर t पर निर्भर करता है, यह समय-अपरिवर्तीय नहीं है क्यूंकि समय-निर्भरता आगत फलन का स्पष्ट फलन नहीं है।

इसके विपरीत, प्रणाली ब की समय-निर्भरता केवल समय-परिवर्तीय आगत का एक फलन है। यह प्रणाली ब को समय-अपरिवर्तनीय बनाता है।

नीचे दिया गया औपचारिक उदाहरण अधिक विस्तार से दिखाता है कि प्रणाली ब समय के एक फलन के रूप में एक शिफ्ट-अपरिवर्तनीय प्रणाली है, जबकि प्रणाली अ नहीं है।

औपचारिक उदाहरण

प्रणाली ए और बी ऊपर भिन्न क्यों हैं इसका एक अधिक औपचारिक प्रमाण अब प्रस्तुत किया गया है। इस प्रमाण को करने के लिए दूसरी परिभाषा का उपयोग किया जाएगा।

प्रणाली ए: इनपुट की देरी से शुरू करें
अब आउटपुट में देरी करें
स्पष्ट रूप से , इसलिए प्रणाली समय-अपरिवर्तनीय नहीं है।
प्रणाली बी: इनपुट की देरी से शुरू करें
अब आउटपुट में देरी करें
स्पष्ट रूप से , इसलिए प्रणाली समय-अपरिवर्तनीय है।

अधिक सामान्यतः, इनपुट और आउटपुट के बीच संबंध है

और समय के साथ इसकी भिन्नता है

समय-अपरिवर्तनीय प्रणालियों के लिए, प्रणाली गुण समय के साथ स्थिर रहते हैं,

ऊपर प्रणाली ए और बी पर लागू:
सामान्य तौर पर, इसलिए यह समय-अपरिवर्तनीय नहीं है,
तो यह समय-अपरिवर्तनीय है।

सार उदाहरण

हम शिफ्ट ऑपरेटर को द्वारा निरूपित कर सकते हैं कहाँ पे वह राशि है जिसके द्वारा एक वेक्टर के पैरामीटर को स्थानांतरित किया जाना चाहिए। उदाहरण के लिए, एडवांस-बाय-1 प्रणाली

इस अमूर्त संकेतन में प्रतिनिधित्व किया जा सकता है

कहाँ पे द्वारा दिया गया एक फ़ंक्शन है

स्थानांतरित आउटपुट देने वाली प्रणाली के साथ

इसलिए एक ऑपरेटर है जो इनपुट वेक्टर को 1 से आगे बढ़ाता है।

मान लीजिए कि हम एक ऑपरेटर (गणित) द्वारा एक प्रणाली का प्रतिनिधित्व करते हैं . यह प्रणाली समय-अपरिवर्तनीय है यदि यह शिफ्ट ऑपरेटर के साथ कम्यूटेटिव ऑपरेशन करती है, यानी,

यदि हमारा प्रणाली समीकरण द्वारा दिया गया है

तो यह समय-अपरिवर्तनीय है यदि हम प्रणाली ऑपरेटर को लागू कर सकते हैं पर उसके बाद शिफ्ट ऑपरेटर , या हम शिफ्ट ऑपरेटर लागू कर सकते हैं प्रणाली ऑपरेटर द्वारा पीछा किया गया , दो संगणनाओं के साथ समान परिणाम प्राप्त होते हैं।

प्रणाली ऑपरेटर को लागू करने से पहले देता है

शिफ्ट ऑपरेटर लगाने से पहले देता है

यदि प्रणाली समय-अपरिवर्तनीय है, तो


यह भी देखें

संदर्भ

  1. Bessai, Horst J. (2005). MIMO Signals and Systems. Springer. p. 28. ISBN 0-387-23488-8.
  2. Sundararajan, D. (2008). A Practical Approach to Signals and Systems. Wiley. p. 81. ISBN 978-0-470-82353-8.
  3. Roberts, Michael J. (2018). Signals and Systems: Analysis Using Transform Methods and MATLAB® (3 ed.). McGraw-Hill. p. 132. ISBN 978-0-07-802812-0.
  4. Oppenheim, Alan; Willsky, Alan (1997). Signals and Systems (second ed.). Prentice Hall.



==