क्रमित प्रारूप

From Vigyanwiki
Revision as of 15:43, 6 July 2023 by alpha>Sugatha

गणित में, विशेषकर समुच्चय सिद्धांत में, दो क्रमित समुच्चय X और Y को समान क्रमित प्रारूप कहा जाता है, यदि वे क्रम समरूप हैं, अर्थात, यदि कोई आक्षेप उपस्थित है (प्रत्येक अवयव दूसरे सम्मुचय में यथार्थतः एक के साथ जुड़ता है) ऐसे कि दोनों f और इसका व्युत्क्रम तथा एकदिस्ट (अवयवों के क्रम को संरक्षित करना) होता हैं। विशेष स्थिति में जब X पूरी तरह से व्यवस्थित है, की एकदिस्टता f इसके व्युत्क्रम की एकदिस्टता का तात्पर्य है।

उदाहरण के लिए, पूर्णांक के समुच्चय (गणित) और सम (गणित) पूर्णांकों के समुच्चय का क्रम प्रकार समान होता है, क्योंकि माप आक्षेप है जो क्रम को सुरक्षित रखता है। लेकिन पूर्णांकों के समुच्चय और परिमेय संख्याओं के समुच्चय (मानक क्रम के साथ) में समान क्रम प्रकार नहीं होता है, क्योंकि यद्यपि ही समुच्चय समान आकार के होते हैं (वे दोनों गणनीय समुच्चय हैं), उनके बीच कोई क्रम-परिरक्षी मानचित्रण विशेषण नहीं है। इन दो क्रमित प्रारूपों में हम दो : धनात्मक पूर्णांकों में समुच्चय (जिसमें सबसे कम अवयव होता है), और ऋणात्मक पूर्णांकों का समुच्चय (जिसमें सबसे बड़ा अवयव होता है) और जोड़ सकते हैं। विवृत अंतराल (0, 1) परिमेय का क्रम परिमेय के समरूपी है (चूँकि, उदाहरण के लिए, पूर्व से उत्तरार्द्ध तक दृढ़ता से बढ़ती द्विभाजन है); अर्ध-विवृत अंतराल [0,1) और (0,1] और विवृत अंतराल [0,1] में निहित परिमेय, तीन अतिरिक्त क्रमित प्रारूप के उदाहरण हैं।

चूँकि क्रम-समतुल्यता समतुल्य संबंध है, यह सभी क्रमबद्ध सम्मुचयो के वर्ग (सेट सिद्धांत) को समतुल्य वर्गों में विभाजित करता है।

सु-क्रमित क्रम प्रारूप

अलग-अलग क्रम प्रारूपों (ऊपर से नीचे) के साथ प्राकृतिक संख्याओं के समुच्चय पर तीन सुव्यवस्थित क्रम: , , और

परिभाषा के अनुसार प्रत्येक सुव्यवस्थित समुच्चय यथार्थतः क्रमसूचक संख्या (गणित) के बराबर होता है। क्रमसूचक संख्याओं को उनकी कक्षाओं का विहित रूप माना जाता है, और इसलिए सुव्यवस्थित समुच्चय के क्रम प्रारूप को साधारणतया संबंधित क्रमसूचक के साथ पहचाना जाता है। उदाहरण के लिए, प्राकृत संख्याओं के समुच्चय का क्रम प्रकार ω हैं।

सुव्यवस्थित समुच्चय का क्रम प्रारूप V को कभी-कभी ord(V)[1] के रूप में व्यक्त किया जाता हैं।

उदाहरण के लिए, समुच्चय पर विचार करें V सम क्रमसूचक ω ⋅ 2 + 7 से भी कम होता हैं:

इसका क्रम प्रारूप है:

क्योंकि गणना की 2 अलग-अलग सूचियाँ हैं और अंत में क्रम से 4 हैं।

परिमेय संख्या

किसी भी गणनीय पूर्णतः क्रमबद्ध समुच्चय को क्रम-संरक्षण प्रकारो से परिमेय संख्याओं में अन्तः क्षेपक रूप से मापा किया जा सकता है। किसी भी घने क्रम को गणना करने योग्य पूर्ण रूप से क्रमित समुच्चय जिसमें कोई उच्चतम और कोई निम्नतम अवयव नहीं है, उसे क्रम-संरक्षण प्रकार से परिमेय संख्याओं पर विशेष रूप से मापा जा सकता है।

संकेतन

पूर्णांक संख्या और परिमेय संख्या का क्रम प्रकार साधारण तौर पर और दर्शाया जाता है, क्रमशः यदि समुच्चय का क्रम प्रारूप हैं, तो के द्वैत (आदेश सिद्धांत) का क्रम प्रारूप (प्रतिलोम क्रम) दर्शाया गया है।

यह भी देखें

  • सु-क्रमित

बाहरी संबंध

  • Weisstein, Eric W. "Order Type". MathWorld.

संदर्भ

  1. "Ordinal Numbers and Their Arithmetic". Archived from the original on 2009-10-27. Retrieved 2007-06-13.