एकसमान मानदंड

From Vigyanwiki
वर्ग की परिधि बिंदुओं का समूह है 2 जहां सुपर मानदंड एक निश्चित सकारात्मक स्थिरांक के बराबर होता है। उदाहरण के लिए, अंक (2, 0), (2, 1), और (2, 2) एक वर्ग की परिधि के साथ स्थित हैं और उन सदिशों के समूह से संबंधित हैं जिनका सुपर मान 2 है।

गणितीय विश्लेषण में, एक समान मानदंड (याsup norm) वास्तविक संख्या|वास्तविक- या जटिल संख्या-मूल्यवान बंधे हुए कार्यों को निर्दिष्ट करता है एक सेट पर परिभाषित (गणित) गैर-ऋणात्मक संख्या

इस नॉर्म (गणित) को भी कहा जाता हैsupremum norm, दChebyshev norm, दinfinity norm, या, जब सबसे निचला और उच्चतम वास्तव में अधिकतम हो, तोmax norm. यूनिफ़ॉर्म नॉर्म नाम इस तथ्य से लिया गया है कि कार्यों का एक क्रम में एकत्रित हो जाता है मीट्रिक (गणित) के अंतर्गत समान मानदंड से प्राप्त यदि और केवल यदि में एकत्रित हो जाता है एकसमान अभिसरण.[1] अगर एक बंद और बंधे हुए अंतराल पर एक सतत कार्य है, या अधिक आम तौर पर एक सघन स्थान सेट है, तो यह घिरा हुआ है और उपरोक्त परिभाषा में सर्वोच्च वीयरस्ट्रैस चरम मूल्य प्रमेय द्वारा प्राप्त किया जाता है, इसलिए हम सर्वोच्च को अधिकतम से प्रतिस्थापित कर सकते हैं। इस मामले में, मानदंड को भी कहा जाता हैmaximum norm. विशेषकर, यदि कुछ वेक्टर ऐसा है परिमित सेट आयामी समन्वय स्थान में, यह रूप लेता है:

मीट्रिक और टोपोलॉजी

इस मानदंड द्वारा उत्पन्न मीट्रिक को कहा जाता हैChebyshev metric, पफनुटी चेबीशेव के बाद, जो इसका व्यवस्थित अध्ययन करने वाले पहले व्यक्ति थे।

यदि हम असीमित कार्यों की अनुमति देते हैं, तो यह सूत्र सख्त अर्थों में एक मानक या मीट्रिक उत्पन्न नहीं करता है, हालांकि प्राप्त तथाकथित मीट्रिक (गणित) # सामान्यीकृत मीट्रिक अभी भी किसी को प्रश्न में फ़ंक्शन स्थान पर टोपोलॉजी को परिभाषित करने की अनुमति देता है।

बाइनरी फ़ंक्शन

फिर एक विशेष डोमेन पर सभी बंधे हुए कार्यों (और, जाहिर है, इसके किसी भी सबसेट) के स्थान पर एक मीट्रिक है। एक क्रम किसी फ़ंक्शन में एक समान अभिसरण अगर और केवल अगर
हम इस मीट्रिक टोपोलॉजी के संबंध में बंद सेट और सेट के क्लोजर को परिभाषित कर सकते हैं; एकसमान मानदंड में बंद सेट को कभी-कभी समान रूप से बंद और एक समान बंद होने वाला कहा जाता है। फ़ंक्शंस ए के एक सेट का एक समान समापन सभी फ़ंक्शंस का स्थान है जिसे समान रूप से परिवर्तित फ़ंक्शंस के अनुक्रम द्वारा अनुमानित किया जा सकता है उदाहरण के लिए, स्टोन-वीयरस्ट्रैस प्रमेय का एक पुनर्कथन यह है कि सभी निरंतर कार्यों का सेट बहुपदों के समुच्चय का एकसमान समापन है एक कॉम्पैक्ट स्पेस पर जटिल सतत फ़ंक्शन (टोपोलॉजी) फ़ंक्शन के लिए, यह इसे सी-स्टार बीजगणित|सी* बीजगणित में बदल देता है।

गुण

सदिशों का समुच्चय जिसका अनंत मान एक दिया गया स्थिरांक है, किनारे की लंबाई के साथ एक अतिविम की सतह बनाता है सबस्क्रिप्ट का कारणक्या वह जब भी है सतत है

कहाँ
कहाँ का डोमेन है और अभिन्न का योग यदि होता है एक अलग सेट है (नॉर्म (गणित)#पी-नॉर्म|पी-नॉर्म देखें)।

यह भी देखें

संदर्भ

  1. Rudin, Walter (1964). गणितीय विश्लेषण के सिद्धांत. New York: McGraw-Hill. pp. 151. ISBN 0-07-054235-X.