क्षेत्र (साधन)

From Vigyanwiki
Revision as of 18:24, 12 July 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
एक विशिष्ट अंग्रेजी क्षेत्र, संभवतः 19वीं शताब्दी की प्रारंभिक से, पीतल के अधिकृत के साथ हाथीदांत से बना है। इस पक्ष में रेखाओं (L), सिकेंट्स (S), कॉर्ड्स (C), और पॉलीगॉन (POL) की रेखाओं के साथ-साथ बाहरी किनारों पर 10 इंच के मापदंड के साथ सीधा 12-इंच शासक बनता है जब क्षेत्र पूरी तरह से खोला गया है, और पैर के 100वें भाग को किनारे के साथ चिह्नित किया गया है (केवल इस तस्वीर में कठिनाई से दिखाई दे रहा है)।
एक ही क्षेत्र का दूसरा भाग, ज्या (एस) की रेखा और स्पर्शरेखा की दो पंक्तियों (टी) के लिए तराजू के साथ, संख्या (एन), साइन (एस), और स्पर्शरेखा (टी) के लिए लॉगरिदमिक गुंटर के मापदंड के साथ बाहरी किनारे है।

क्षेत्र जिसे आनुपातिक कम्पास या सैन्य कम्पास के रूप में भी जाना जाता है, सोलहवीं शताब्दी के अंत से उन्नीसवीं शताब्दी तक उपयोग में आने वाला प्रमुख गणितीय उपकरण था। यह उपकरण है जिसमें समान लंबाई के दो शासक हिंज से जुड़े होते हैं। यंत्र पर कई मापदंड अंकित हैं जो विभिन्न गणितीय गणनाओं की सुविधा प्रदान करते हैं। इसका उपयोग आनुपातिकता (गणित), और विभाजन (गणित), ज्यामिति और त्रिकोणमिति में समस्याओं को हल करने के लिए और विभिन्न गणितीय कार्यों, जैसे कि वर्गमूल और घनमूल की गणना के लिए किया गया था। इसके कई मापदंड ने गनरी, सर्वेक्षण और मार्गदर्शन में समस्याओं के आसान और प्रत्यक्ष समाधान की अनुमति दी थी । इस क्षेत्र का नाम यूक्लिड की छठी पुस्तक के चौथे प्रस्ताव से लिया गया है, जहाँ यह प्रदर्शित किया गया है कि समान त्रिभुजों की समान भुजाएँ समानुपाती होती हैं। कुछ क्षेत्रों में चतुर्भुज (साधन) भी सम्मिलित है, और कभी-कभी पैर के अंत में दबाना होता है जिससे उपकरण को तोपखाने के चतुर्भुज के रूप में उपयोग किया जा सकता है।

इतिहास

क्लेमेंट सिरियाक डे मैंगिन, अनुपात कम्पास का उपयोग, 1637
विभेदक के साथ पीतल का क्षेत्र, संभवतः 1630 के आसपास ड्रेसडेन में बनाया गया था

17 वीं शताब्दी की प्रारंभिक से पहले कई अलग-अलग लोगों द्वारा अनिवार्य रूप से साथ और स्वतंत्र रूप से इस क्षेत्र का आविष्कार किया गया था।

फैब्रीज़ियो मोर्डेंटे (1532 - सीए 1608) इतालवी गणितज्ञ थे, जो आनुपातिक आठ-नुकीले कम्पास के अपने आविष्कार के लिए जाने जाते हैं, जिसमें कर्सर के साथ दो भुजाएँ होती हैं जो वृत्त की परिधि, क्षेत्रफल और कोणों को मापने में समस्याओं के समाधान की अनुमति देती हैं। 1567 में उन्होंने वेनिस में एकल पत्रक ग्रंथ प्रकाशित किया जिसमें उनकी उपकरण के चित्र दिखाए गए थे।[1] 1585 में जियोर्डानो ब्रूनो ने मोर्डेंटे के कम्पास का उपयोग अरस्तू की परिकल्पना को इन्फिनिटिमल्स की अतुलनीयता पर खंडन करने के लिए किया गया था , इस प्रकार न्यूनतम के अस्तित्व की पुष्टि की जिसने अपने स्वयं के परमाणु सिद्धांत का आधार रखा था।[2] गाइडोबाल्डो डेल मोंटे ने पॉलीमेट्रिक कंपास सी विकसित किया। 1670, जिसमें नियमित बहुभुज बनाने के लिए मापदंड भी सम्मिलित है। इतालवी खगोलशास्त्री गैलीलियो गैलीली ने 1590 के दशक में और मापदंड जोड़े, और 1606 में इस विषय पर पुस्तक प्रकाशित की थी ।[3] गैलीलियो के क्षेत्र को पहले सैन्य अनुप्रयोगों के लिए डिज़ाइन किया गया था, किंतु सामान्य प्रयोजन गणना उपकरण के रूप में विकसित हुआ।

इंग्लैंड में दो प्रारंभिक ज्ञात क्षेत्र क्रमशः रॉबर्ट बेकिट और चार्ल्स व्हिटवेल द्वारा बनाए गए थे, दोनों दिनांक 1597 थे। इनमें अंग्रेजी गणितज्ञ थॉमस हूड (गणितज्ञ) की 1598 पुस्तक द्वारा दिए गए उपकरण के विवरण के साथ शक्तिशाली समानता है।[3] वर्णित क्षेत्र हूड सर्वेक्षण उपकरण के रूप में उपयोग करने के लिए लक्षित था और इसमें ध्रुव या पोस्ट के साथ-साथ आर्क स्केल और अतिरिक्त स्लाइडिंग लेग के लिए उपकरण को जोड़ने के लिए जगहें और बढ़ते सॉकेट सम्मिलित थे। 1600 के दशक में, ब्रिटिश गणितज्ञ एडमंड गुंटर ने सामान के साथ तिरस्कृत किया गया था किंतु मर्केटर प्रोजेक्शन पर मेरिडियन के साथ अक्षांशों के अंतर के आनुपातिक विभाजन के साथ मध्याह्न रेखा सहित अतिरिक्त मापदंड को जोड़ा जाता है [4] इसके निर्माण और उपयोग की व्याख्या करने वाली लैटिन पांडुलिपि को निजी रोप से वितरित करना था। जो गुंटर ने इसे अंग्रेजी में 1623 में डी क्षेत्र एट रेडियो के रूप में प्रकाशित किया था ।

गैलीलियो का क्षेत्र

गैलीलियो के ज्यामितीय और सैन्य कम्पास, माना जाता है कि सी बनाया गया है। माजोलेनी द्वारा 1604
उपकरण पर उनके मैनुअल से गैलीलियो के सैन्य कम्पास के तराजू को दिखाते हुए चित्र।

गैलीलियो ने पहली बार 1590 के दशक की प्रारंभिक में तोपखानों के लिए उपकरण के रूप में अपना क्षेत्र विकसित किया था । 1597 तक यह ऐसे उपकरण के रूप में विकसित हो गया था जिसकी व्यापक उपयोगिता थी। इसका उपयोग, उदाहरण के लिए, सीधी रेखाओं और अर्ध-वृत्तों के संयोजन से निर्मित किसी भी समतल आकृति के क्षेत्रफल की गणना करने के लिए किया जा सकता है। गैलीलियो अपने क्षेत्र में सुधार करने के लिए दृढ़ थे जिससे यूक्लिड के तत्वों में चर्चा की गई किसी भी आकृति के क्षेत्रफल की गणना करने के लिए इसका उपयोग किया जा सकता है। ऐसा करने के लिए, उसे वृत्ताकार खंडों के क्षेत्रफल की गणना करने की क्षमता जोड़ने की आवश्यकता थी। इस समस्या को हल करने में उन्हें साल से अधित्त्तम का समय लगा। जिस उपकरण को आज हम गैलीलियो के क्षेत्र के रूप में जानते हैं, वह इस अतिरिक्त क्षमता वाला संस्करण है जिसे उन्होंने 1599 में उपकरण निर्माता मार्क'एंटोनियो मैजोलेनी की सहायता से बनाना प्रारंभ किया था। गैलीलियो ने मेजोलेनी और उसके परिवार को कमरा और बोर्ड दिया, और उसे 35 लीयर बिक्री मूल्य का दो-तिहाई भुगतान किया; गैलीलियो उपकरण के उपयोग को पढ़ाने वाले पाठ्यक्रम के लिए 120 लीयर चार्ज करेगा, जो कुशल कारीगरों के वार्षिक वेतन का लगभग आधा है।[5] उनके अधिकांश ग्राहक अमीर रईस थे, जिनमें फर्डिनेंड II, पवित्र रोमन सम्राट सम्मिलित थे, जिन्हें गैलीलियो ने चांदी से बना क्षेत्र बेचा था। सभी में सौ से अधिक बनाए गए थे, किंतु आज केवल तीन उपस्थित हैं: हार्वर्ड विश्वविद्यालय में पुतनाम गैलरी में, मिलान के स्फोर्ज़ा कैसल में सजावटी कला संग्रहालय में, और फ्लोरेंस में गैलीलियो संग्रहालय में स्थित है ।

गैलीलियो ने अपने 1606 मैनुअल में क्षेत्र के साथ 32 अलग-अलग गणना करने का विधि बताई थी।[6] प्रस्तावना में, गैलीलियो ने लिखा है कि इस क्षेत्र का उत्पादन करने का उनका आशय उन लोगों को सक्षम करना था, जिन्होंने गणित का अध्ययन नहीं किया था, जिसमें सम्मिलित गणितीय विवरणों को जाने बिना जटिल गणना करने के लिए सक्षम किया गया था। क्षेत्र का उपयोग विभेदक के साथ संयोजन में किया गया था, जिसे कम्पास (ड्राइंग उपकरण ) भी कहा जाता है। क्षेत्र की प्रत्येक भुजा को चार रेखाओं के साथ आगे की ओर और तीन को पीछे की ओर चिह्नित किया गया था, और धुरी में डिंपल था जो विभाजक के बिंदु को स्वीकार करेगा। प्रत्येक भुजा पर रेखाएँ और तराजू समान हैं, और उसी क्रम में व्यवस्थित हैं जैसे आप आंतरिक किनारे से बाहरी किनारे पर चले गए, इस प्रकार सात जोड़ी रेखाएँ बनती हैं। सभी गणनाएँ पाँच बहुत ही सरल चरणों के कुछ संयोजन के साथ की जा सकती हैं: विभेदक के साथ कुछ लंबाई, पृथक्करण या वस्तु की चौड़ाई को मापना; और क्षेत्र की भुजाओं को खोलना और विभाजक पृथक्करण के लिए रेखाओं की जोड़ी पर दो संबंधित बिंदुओं के बीच क्रॉसवर्ड दूरी को स्थित करना; और कई बार क्षेत्र को कुछ अलग करने के लिए स्थित किए जाने के बाद पंक्तियों की जोड़ी पर दो संबंधित बिंदुओं के बीच की क्रॉसवर्ड दूरी को मापना; किसी मापदंड से उस बिंदु पर मान पढ़ना जहां आड़े-तिरछे दूरी विभाजक पृथक्करण से मेल खाती है; और मापदंड से मान पढ़ना जहां धुरी से दूरी विभाजक से मेल खाती है। गैलीलियो ने यह नहीं बताया कि तराजू का निर्माण कैसे किया गया था, उन्होंने माना कि व्यापार रहस्य है, किंतु विवरण का अनुमान लगाया जा सकता है। स्केल मार्किंग को लगभग 1% की स्पष्टता के साथ रखा गया था।

अंकगणितीय रेखाएँ

उपकरण के सबसे अंदरूनी मापदंड को अंकगणितीय प्रगति में उनके विभाजन से अंकगणितीय रेखाएं कहा जाता है, यानी, एक रैखिक मापदंड गैलीलियो संग्रहालय में क्षेत्र 16 से 260 तक चिह्नित है।[7] यदि हम धुरी से लंबाई कहते हैं, तो और मान वाले दो चिह्न दिए गए हैं, उनकी लंबाई का अनुपात संख्याओं के अनुपात के अनुपात में है। आधुनिक संकेतन में:

गैलीलियो बताते हैं कि इन मापदंड का उपयोग करके रेखा को कई समान भागों में कैसे विभाजित किया जाए, किसी रेखा के किसी भी अंश को कैसे मापा जाए, किसी आकृति या मानचित्र का छोटा संस्करण कैसे तैयार किया जाए, यूक्लिड के स्वर्ण नियम (जिसे क्रॉस भी कहा जाता है) को कैसे हल किया जाए -गुणन या तीन का नियम), मुद्रा में मूल्य को दूसरी मुद्रा में मूल्य में कैसे परिवर्तित करें और निवेश के चक्रवृद्धि मूल्य की गणना कैसे करें।

एक उदाहरण के रूप में, किसी निवेश के चक्रवृद्धि मूल्य की गणना करने की प्रक्रिया इस प्रकार है। यदि प्रारंभिक निवेश P0 है, तो विभाजक को अंकगणितीय रेखाओं पर P0 पर चिह्नित बिंदु तक धुरी से दूरी पर सेट करें। उपकरण खोलें और अंकगणितीय रेखाओं पर 100-100 बिंदु पर आड़ी दूरी को ठीक P0 मापी गई दूरी पर सेट करते है। यदि अवधि के लिए ब्याज दर 6% है, तो विभाजक को 106-106 पर आड़े-तिरछे दूरी पर सेट करते है। विभाजक को धुरी पर रखें, और देखें कि दूसरा छोर अंकगणितीय रेखाओं पर जहाँ पड़ता है। यह पहली अवधि के अंत में निवेश का मूल्य है। अब आड़े-तिरछे दूरी को फिर से 100-100 पर वर्तमान विभेदक सेपरेशन पर सेट करें और इस प्रक्रिया को जितनी जरूरत हो उतनी अवधि के लिए दोहराएं जाते है।

ज्यामितीय रेखाएँ

रेखाओं के अगले सेट को ज्यामितीय रेखाएँ कहा जाता है, जिसमें 1 से 50 तक की संख्या होती है, जिसकी लंबाई वर्गमूल के समानुपाती होती है, जिसे ज्यामितीय कहा जाता है क्योंकि उनका उपयोग ज्यामितीय माध्य खोजने और समतल आकृतियों के क्षेत्रों के साथ काम करने के लिए किया जाता है। यदि हम धुरी से लंबाई कहते हैं तब:

गैलीलियो बताते हैं कि इन रेखाओं का उपयोग किसी आकृति को मापने के लिए कैसे किया जाता है जैसे कि नए आंकड़े में मूल के लिए दिया गया क्षेत्र अनुपात होता है, दो समान आंकड़ों के क्षेत्रफल अनुपात को कैसे मापें, समान आंकड़ों के सेट को दूसरे समान आंकड़े में कैसे संयोजित करें परिणामी आकृति में सेट का संयुक्त क्षेत्र है, समान आकृति का निर्माण कैसे करें जिसका क्षेत्रफल दो अन्य समान आकृतियों के क्षेत्रफल के अंतर के समान हो जिसमे किसी संख्या का वर्गमूल कैसे ज्ञात करें, एन सैनिकों को ग्रिड में कैसे व्यवस्थित करें जहां पंक्तियों से स्तंभों का अनुपात कुछ निर्दिष्ट मान है, और दो संख्याओं का ज्यामितीय माध्य कैसे ज्ञात करें।

एक उदाहरण के रूप में समान आकृति बनाने की प्रक्रिया जिसमें समान आकृतियों के सेट का संयुक्त क्षेत्र है, इस प्रकार है: सबसे बड़ी आकृति में पक्ष चुनें और विभाजक के साथ इसकी लंबाई मापा जाता है । खंड को खोलें और विभाजक पृथक्करण के लिए ज्यामितीय रेखाओं पर कुछ मध्यवर्ती मान पर क्रॉसवाइज़ दूरी सेट करें, कोई भी संख्या 20 कहेगी। फिर प्रत्येक अन्य आंकड़े में संबंधित पक्ष की लंबाई को मापें, और ज्यामितीय रेखा मापदंड को पढ़ें वह मान जहां आड़े-तिरछे दूरी इन लंबाई से मेल खाती है। हमारे द्वारा मूल रूप से सेट किए गए 20 सहित सभी स्केल रीडिंग को साथ जोड़ें जाते है ज्यामितीय रेखाओं पर संयुक्त मूल्य पर, आड़ी दूरी को मापें। यह उस आकृति के किनारे की लंबाई होगी जिसमें सेट का संयुक्त क्षेत्र है। फिर आप मिलान करने के लिए सबसे बड़े आंकड़े में अन्य सभी पक्षों की लंबाई को मापने के लिए अंकगणितीय मापदंड का उपयोग कर सकते हैं। यह प्रक्रिया सीधी रेखाओं से बनी किसी भी बंद आकृति के लिए काम कर सकती है ।


वर्गमूल की गणना करने की प्रक्रिया मूलांक के आकार के आधार पर भिन्न होती है। एक "मध्यम" संख्या ("5,000 के क्षेत्र में") के लिए, अंकगणितीय रेखाओं पर धुरी से चिह्नित बिंदु 40 तक की दूरी को मापना प्रारंभ करें, और ज्यामितीय रेखाओं पर क्षेत्र की क्रॉसवाइज दूरी 16-16 पर सेट करें। इस दूरी तक. इसके बाद अपना नंबर लें और निकटतम पूर्णांक तक पूर्णांकित करते हुए 100 से भाग दें। तो उदाहरण के लिए 8679 87 हो जाता है। यदि यह संख्या 50 (ज्यामितीय रेखा मापदंड पर सबसे बड़ा मान) से अधिक है तो इसे कम किया जाना चाहिए, इस उदाहरण में संभवतः 29 बनाने के लिए 3 से विभाजित किया जाए। इसके बाद ज्यामितीय रेखाओं पर क्रॉसवाइज दूरी मापें 29 पर, अंकगणितीय रेखाओं पर यह दूरी का प्रतिनिधित्व करती है। क्योंकि क्षेत्र पर फिट होने के लिए हमारी संख्या कम हो गई थी, हमें लंबाई को तक बढ़ाना होगा। हम कोई भी सुविधाजनक मूल्य चुन सकते हैं, उदा. 10, विभाजक पृथक्करण के लिए क्षेत्र क्रॉसवाइज दूरी को 10 पर सेट करें, और फिर ज्यामितीय रेखाओं पर क्रॉसवाइज दूरी को 30 पर मापें, फिर मापने के लिए विभेदक को अंकगणितीय रेखाओं के सामने रखें। के अधिक समीप है.


एक "छोटी" संख्या, संख्या "लगभग 100" के वर्गमूल की गणना करने की प्रक्रिया सरल है: हम प्रारंभिक में 100 से विभाजित करने की चिंता नहीं करते हैं, किंतु अन्यथा उसी प्रक्रिया को करते हैं। अंत में, परिणामी वर्गमूल अनुमान को 10 से विभाजित करें। बड़ी संख्या (लगभग 50,000) के लिए, अंकगणितीय रेखाओं पर धुरी से 100 पर बिंदु तक की दूरी पर ज्यामितीय रेखाओं पर 10–10 पर आड़े-तिरछे क्षेत्र सेट करें। संख्या को 1000 से विभाजित करें और निकटतम पूर्णांक तक गोल करें। फिर पहले की तरह ही प्रक्रिया अपनाएं जाते है ।

गैलीलियो आगे कोई मार्गदर्शन या परिशोधन प्रदान नहीं करता है। किसी दिए गए नंबर के लिए कौन सी प्रक्रिया का उपयोग करना है, यह जानने के लिए कुछ विचार और अनिश्चितता के प्रसार के लिए प्रशंसा की आवश्यकता होती है।

त्रिविम रेखाएँ

त्रिविम रेखाओं को इसलिए कहा जाता है क्योंकि वे ठोस ज्यामिति, त्रि-आयामी वस्तुओं की ज्यामिति से संबंधित होती हैं। मापदंड को 148 पर चिह्नित किया गया है, और धुरी से दूरी घनमूल के समानुपाती है। यदि हम लंबाई को कहते हैं तब

ये रेखाएँ ज्यामितीय रेखाओं के समान विधि से काम करती हैं, अतिरिक्त इसके कि वे क्षेत्रों के अतिरिक्त वॉल्यूम से प्रसारित होती हैं।

गैलीलियो बताते हैं कि एक समान ठोस में संगत भुजा की लंबाई ज्ञात करने के लिए इन रेखाओं का उपयोग कैसे करें, जहां ठोस का मूल से एक निश्चित आयतन अनुपात होता है, संगत भुजाओं की एक जोड़ी की लंबाई को देखते हुए दो समान ठोसों का आयतन अनुपात कैसे निर्धारित किया जाए, कैसे एक समान ठोस की भुजाओं की लंबाई ज्ञात करना जिसमें अन्य समान ठोसों के समूह का संयुक्त आयतन हो, किसी संख्या का घनमूल कैसे ज्ञात करें, दो संख्याओं और के बीच के दो मध्यवर्ती मान कैसे ज्ञात करें जैसे कि , और किसी दिए गए स्केलिंग कारक आर के लिए, और एक घन के किनारे को कैसे खोजे जिसका आयतन एक आयताकार घनाभ (वर्ग-कोने वाला बॉक्स) के समान है।

, , और भुजाओं वाले एक आयताकार घनाभ का घन बनाना गणना करने के समान है। गैलीलियो की विधि में दो भुजाओं का ज्यामितीय माध्य ज्ञात करने के लिए पहले ज्यामितीय रेखाओं का उपयोग किया जाता है, फिर वह अंकगणित के साथ दूरी को मापता है एक विभाजक का उपयोग करके चिह्नित बिंदु पर रेखाएं, और फिर स्टीरियोमेट्रिक पंक्तियों पर चिह्नित बिंदु पर इस दूरी पर क्षेत्र को क्रॉसवाइज सेट करें, क्षेत्र को कैलिब्रेट करें जिससे स्टीरियोमेट्रिक पंक्तियों पर धुरी से बिंदु तक की दूरी का प्रतिनिधित्व करे भुजाओं और वाले घनाभ के आयतन वाले घन की भुजा फिर वह धुरी से अंकगणितीय रेखाओं पर चिह्नित बिंदु तक की दूरी को मापता है, और देखता है कि स्टीरियोमेट्रिक रेखाओं पर यह दूरी किस मान पर है क्रॉसवाइज फिट बैठता है, इस प्रकार पिछले परिणाम को से गुणा करने पर वांछित के रूप में प्राप्त होता है।

घनमूल की गणना करने की प्रक्रिया वर्गमूल के समान है, अतिरिक्त इसके कि यह केवल 1,000 या उससे अधिक के मानों के लिए काम करती है। "मध्यम" संख्याओं के लिए हम त्रिविम रेखाओं पर 64-64 पर अंकगणितीय रेखाओं पर अंकगणितीय रेखाओं पर धुरी से बिंदु 40 तक की दूरी पर क्रॉसवाइज़ सेट करते हैं। फिर हम अपनी संख्या से अंतिम तीन अंक हटा देते हैं, और यदि हमने जो संख्या छोड़ी है वह 500 से अधिक है, तो हम शेष में जोड़ देते हैं। हम शेष मान पर त्रिविम रेखाओं पर आड़े-तिरछे दूरी को मापते हैं, और घनमूल को खोजने के लिए इसे अंकगणितीय रेखाओं के विरुद्ध रखते हैं। सबसे बड़ी संख्या जिसे यहां बिना रीस्केलिंग के हैंडल किया जा सकता है वह है 148,000। "बड़ी" संख्याओं के लिए हम अंकगणितीय रेखाओं पर धुरी से बिंदु 100 तक की दूरी पर स्टीरियोमेट्रिक पंक्तियों पर 100–100 पर क्षेत्र क्रॉसवाइज़ सेट करते हैं, और तीन अंकों को छोड़ने के अतिरिक्त हम चार को छोड़ देते हैं। यह 10,000 से 1,480,000 तक की संख्या को बिना रीस्केलिंग के संभाल सकता है। व्यावहारिक उपयोग के लिए आपको 148,000 तक के सभी मानों के लिए मध्यम संख्या प्रक्रिया का उपयोग करना चाहिए जो 10,000 के गुणक के लगभग 2% के अंदर नहीं हैं।

धात्विक रेखाएँ

धात्विक रेखाएं, सामने की सतह पर सबसे बाहरी जोड़ी, प्रतीकों "ओआरओ" (ओरो, सोना के लिए), पीआईओ (पियोम्बो, सीसा के लिए), "एआर" (अर्जेंटो, चांदी के लिए), "आरए" (के लिए) से चिह्नित हैं। रेम, कॉपर), "एफई" (फेरो, आयरन के लिए), "एसटी " (स्टैनो, टिन के लिए), "एमए " (मर्मो, मार्बल के लिए), और "पीआईई" (पिएट्रा, स्टोन के लिए)। इन प्रतीकों को विशिष्ट भार या घनत्व को कम करके, व्युत्क्रम घनमूल के समानुपाती दूरी के साथ व्यवस्थित किया जाता है। घनत्व और की दो सामग्रियों को देखते हुए यदि हम धुरी से लंबाई को कहते हैं

इस मापदंड पर लंबाई का अनुपात समान वजन किंतु विभिन्न सामग्रियों की दो गेंदों के व्यास के अनुपात के समानुपाती होता है।

"कैलिबर बनाने" की समस्या को हल करने के लिए आर्टिलरीमैन के लिए ये पंक्तियाँ रुचिकर थीं, अर्थात् किसी आकार और पदार्थ के तोप के गोले के लिए उपयोग करने के लिए सही पाउडर चार्ज का पता कैसे लगाया जाए, जब तोप के गोले के लिए सही चार्ज ज्ञात हो विभिन्न आकार और पदार्थ ऐसा करने के लिए, आप ज्ञात आवेश के साथ तोप के गोले के व्यास को मापेंगे और इस तोप के गोले के भौतिक चिह्न पर उस व्यास के लिए धातु की रेखाओं पर क्षेत्र को आड़े-तिरछे सेट करेंगे। दूसरे तोप के गोले की पदार्थ के प्रकार पर आड़े-तिरछे दूरी आपको इस पदार्थ में तोप के गोले का व्यास देती है जो पहली गेंद के समान वजन है। सही आवेश प्राप्त करने के लिए हमें इस लंबाई को स्टीरियोमेट्रिक रूप से दूसरी गेंद के दिए गए व्यास तक स्केल करने की आवश्यकता है, इसलिए हम स्टीरियोमेट्रिक पंक्तियों पर क्रॉसवाइज़ दूरी को 100-100 पर सेट करते हैं, जिसे हमने अभी-अभी धातु की रेखाओं से मापा है, और फिर देखें कि स्टीरियोमीट्रिक रेखाओं पर आड़ी-तिरछी दूरी दूसरी गेंद के वास्तविक व्यास से कहां मेल खाती है। आवश्यक चार्ज तब ज्ञात चार्ज वाली गेंद की तुलना में इस स्केल रीडिंग के 100 के अनुपात में होता है। फिर आप इस अनुपात में आवेश भार को मापने के लिए अंकगणितीय रेखाओं का उपयोग कर सकते हैं।

पॉलीग्राफिक पंक्तिया

एक विशिष्ट क्षेत्र पर बहुभुजों के मापदंड में दिए गए वृत्त में अंकित n भुजाओं के नियमित बहुभुज की पार्श्व लंबाई के समानुपाती रेखाएँ होती हैं। गैलीलियो के क्षेत्र के डिजाइन में, उन्होंने इस मापदंड को उल्टा कर दिया जिससे संख्या में वृद्धि हो, क्योंकि वे हिंज से दूर जाते हैं और अधिक समान दूरी पर होते हैं। बाद में इंग्लैंड और कॉन्टिनेंटल यूरोप दोनों में डिजाइन मूल बहुभुज मापदंड पर वापस आ गए।

पॉलीग्राफ़िक पंक्तिया उपकरण के पीछे सबसे आंतरिक स्केल, 3 से 15 तक लेबल किया गया है, और धुरी से दूरी किसी दिए गए सर्कल में अंकित पक्षों के नियमित बहुभुज की तरफ की लंबाई के विपरीत आनुपातिक है, या सीधे आनुपातिक है दी गई लंबाई की भुजाओं वाले एक नियमित बहुभुज की परित्रिज्या यदि पॉलीग्राफ़िक मापदंड पर लंबाई है और डिग्री में मापे गए गोलाकार चाप की त्रिकोणमितीय जीवा लंबाई को दर्शाता है, तो

आधुनिक ज्या फलन के संदर्भ में कार्यात्मक संकेतन का उपयोग करना,

जहाँ षट्भुज के लिए परिधि है, इन पंक्तियों का उपयोग 3-पक्षीय समबाहु त्रिभुज से 15-पक्षीय पंचकोण तक किसी भी नियमित बहुभुज के निर्माण में सहायता के लिए किया जा सकता है।

गैलीलियो बताता है कि इन पंक्तियों का उपयोग किसी दी गई लंबाई के n भुजाओं के बहुभुज के लिए संलग्न वृत्त की त्रिज्या खोजने के लिए या दूसरी दिशा में जीवा (ज्यामिति) की लंबाई कैसे ज्ञात करें जो वृत्त की परिधि को विभाजित करती है भागों से संलग्न वृत्त की त्रिज्या खोजने की प्रक्रिया इस प्रकार है: जहाँ क्षेत्र को खोलें और पॉलीग्राफिक पंक्तियों पर वांछित पार्श्व लंबाई के बिंदु 6-6 पर आड़े-तिरछे दूरी निर्धारित करें। किंतु पर आड़े-तिरछे मापी गई दूरी पॉलीग्राफिक पंक्तियों पर संलग्न वृत्त की त्रिज्या है।

टेराटोजेनिक पंक्तिया

जैसे ही आप धुरी से दूर जाते हैं, टेट्रागोनिक रेखाएँ 13 से नीचे 3 तक चिह्नित हो जाती हैं, और धुरी से दूरी का अनुमान लगाया जा सकता है, जहाँ धुरी से चिह्नित बिंदु 3 तक की दूरी है। मापदंड पर एक वृत्त है जो 6 और 7 के लगभग मध्य में स्थित है। यह नाम टेट्रागोन (चतुर्भुज) से आया है, क्योंकि इन रेखाओं का मुख्य उद्देश्य नियमित बहुभुजों का चतुर्भुज है, अर्थात एक वर्ग की भुजा ज्ञात करना जिसका क्षेत्रफल दिए गए नियमित बहुभुज के समान है। इनका उपयोग वृत्त को वर्गाकार करने के लिए भी किया जा सकता है।

भुजाओं वाले एक नियमित बहुभुज का क्षेत्रफल है, जहाँ बहुभुज की भुजा की लंबाई है। समान क्षेत्रफल वाले वृत्त की त्रिज्या है। का मान जिस पर वृत्त की त्रिज्या बहुभुज की भुजा की लंबाई के समान है, है। जरूर, ऐसा कोई बहुभुज नहीं है, किंतु यह हमें टेट्रागोनिक पंक्तिया, संकेतित वृत्त पर एक संदर्भ बिंदु देता है, जहां वृत्त की त्रिज्या को क्रॉसवाइज पढ़ना आसान होता है जो एन भुजाओं वाले बहुभुज के क्षेत्रफल के समान है। यदि हम बहुभुज की पार्श्व लंबाई के क्रॉसवाइज टेट्रागोनिक पंक्तिया पर क्षेत्र को पर सेट करते हैं। फिर वृत्त का वर्ग करना केवल का उपयोग करना है। बहुभुज को वर्गाकार करने के लिए, हम बस क्षेत्र को भुजा की लंबाई पर क्रॉसवाइज सेट करते हैं, और पर क्रॉसवाइज मापते हैं। अलग-अलग भुजाओं की संख्या वाले समान क्षेत्रफल वाले किन्हीं दो बहुभुजों के लिए आवश्यक भुजाओं की लंबाई ज्ञात करना उतना ही आसान है।

जोड़ी गई पंक्तियां

पीठ पर रेखाओं के सबसे बाहरी सेट में दोहरा मापदंड , बाहरी और आंतरिक मापदंड होता है। बाहरी मापदंड रैखिक है और जब आप धुरी से दूर जाते हैं तो 18 से 0 तक चलता है, और शून्य बिंदु को ⌓ के साथ चिह्नित किया जाता है, जो गोलाकार खंड के लिए प्रतीक है। यह शून्य बिंदु बांह के बाहर निकलने के रास्ते का लगभग 70% है। आंतरिक मापदंड को भी 18 से नीचे 0 तक चलाने के लिए वर्णित किया गया है, किंतु गैलीलियो संग्रहालय में क्षेत्र केवल 17 से चिह्नित है। आंतरिक मापदंड पर शून्य बिंदु आगे की दूरी पर हाथ पर स्थित है। जहाँ बाहरी मापदंड पर धुरी से शून्य तक की दूरी है, और शून्य को छोटे वर्ग के साथ चिह्नित किया गया है। बाहरी मापदंड शून्य आंतरिक मापदंड पर 6 चिह्नित बिंदु के समीप स्थित है। पहली दृष्टि में आंतरिक मापदंड भी रेखीय प्रतीत होता है, किंतु इसके बिंदुओं के बीच की दूरी वास्तव में अधिक जटिल सूत्र द्वारा निर्धारित की जाती है, जिसका हमें अनुमान लगाना होता है क्योंकि गैलीलियो यह नहीं बताते कि यह मापदंड कैसे बनाया गया था। इन पंक्तियों का नाम इस तथ्य से निकला है कि उन्हें गैलीलियो ने अपने क्षेत्र के पुराने संस्करण में जोड़ा था। इन रेखाओं का उपयोग वृत्ताकार खंडों को वर्गाकार करने के लिए किया जाता है, जो कि वर्ग की भुजा की लंबाई का पता लगाना है, जो किसी दिए गए जीवा की लंबाई और ऊँचाई के साथ वृत्ताकार खंड के क्षेत्रफल के समान है, जहाँ खंड अधिकतम अर्धवृत्त है।

एक वृत्ताकार खंड को वर्गाकार करने की प्रक्रिया इस प्रकार है। जीवा की आधी लंबाई मापें, . जीवा के मध्यबिंदु पर, जीवा पर लंबवत रेखा की लंबाई मापें जहां यह वृत्त को काटती है, ऊंचाई बाहरी मापदंड के शून्य पर अर्ध-कॉर्ड लंबाई तक जोड़ी गई रेखाओं पर क्षेत्र को क्रॉसवाइज़ सेट करें, बाहरी मापदंड पर बिंदु खोजें, , जहां क्रॉसवाइज दूरी है; , से कम या उसके समान होना चाहिए। आंतरिक मापदंड पर उस बिंदु पर जाएँ जिस पर भी अंकित है। आंतरिक मापदंड पर बिंदुओं n-n के बीच की क्रॉसवाइज दूरी, वृत्ताकार खंड के क्षेत्रफल के समान वर्ग की भुजा की लंबाई है।

.यह देखने के लिए कि यह कैसे काम करता है, हम यह ध्यान देकर प्रारंभ करते हैं (जैसा कि गोलाकार खंड में चित्र में देखा जा सकता है), कि खंड का क्षेत्र पाई स्लाइस के क्षेत्र के बीच का अंतर है, जहां जीवा वृत्त को काटती है, और जीवा और दो त्रिज्याओं द्वारा निर्मित त्रिभुज जो जीवा के सिरों को छूते हैं। त्रिभुज के आधार की लंबाई है और ऊंचाई है , इसलिए त्रिभुज का क्षेत्रफल है पाइथोग्रास प्रमेय का उपयोग करके, हम दिखा सकते हैं कि पाई स्लाइस का क्षेत्रफल कोण द्वारा कवर किए गए वृत्त के क्षेत्रफल का अंश है। रेडियन में के लिए, यह क्षेत्र है, जहां व्युत्क्रम है साइन फलन यदि हम और को परिभाषित करते हैं, तो हम खंड का क्षेत्रफल इस प्रकार लिख सकते हैं:

बाहरी मापदंड पर धुरी से चिह्नित बिंदु तक की दूरी } है जहां बाहरी मापदंड पर धुरी से शून्य बिंदु तक की दूरी है। जब हम क्षेत्र को शून्य बिंदु पर पर क्रॉसवाइज सेट करते हैं और बाहरी मापदंड पर उस बिंदु को खोजते हैं जहां क्रॉसवाइज दूरी है, तो हम समान त्रिकोणों की एक जोड़ी स्थापित करते हैं जो धुरी पर क्षेत्र की भुजाओं द्वारा बनाए गए कोण को साझा करते हैं, जिससे }. यदि हम आंतरिक मापदंड पर धुरी से बिंदु की दूरी को के साथ पर सेट करते हैं, और को पहले की तरह परिभाषित करते हैं, तो आंतरिक मापदंड पर पर मापी गई क्रॉसवाइज़ दूरी, पक्ष की लंबाई होगी खंड के समान क्षेत्रफल वाला वर्ग है।

अन्य उपयोग

यह क्षेत्र एक प्लंब बॉब और एक अलग करने योग्य क्वाड्रेंट के साथ आया था, जो अपनी जगह पर होने पर, भुजाओं को एक-दूसरे से 90° पर लॉक कर देता था। इस क्षेत्र का उपयोग सर्वेक्षण और बैलिस्टिक में अनुप्रयोगों के साथ, त्रिकोणासन का उपयोग करके दृष्टि और दूरी माप के लिए किया जा सकता है। क्षेत्र का उपयोग बैरल में एक हाथ डालकर और प्लंब बॉब के स्थान से ऊंचाई को पढ़कर तोप की ऊंचाई को आसानी से निर्धारित करने के लिए भी किया जा सकता है।

टिप्पणियाँ

  1. Camerota, Filippo (2012), "Mordente, Fabrizio", Biographical Dictionary of Italians (in Italian), vol. 76, retrieved 9 October 2019{{citation}}: CS1 maint: unrecognized language (link)
  2. Bruno, Giordano (1585), Figuratio Aristotelici Physici auditus
  3. 3.0 3.1 Meskens 1997, p. 146.
  4. Gunter 1673, "Of the Use of the Meridian Line in Navigation", pp. 99–140.
  5. Productivity, Wages in Italy 1270-1913, Paolo Malanima, conference proceedings of Towards a Global History of Prices and Wages, 2004
  6. Galilei 1606
  7. Scale details can be read from photographs presented on page 88 in Bennett, 2022


संदर्भ


बाहरी संबंध