थर्मोडायनामिक गतिविधि

From Vigyanwiki

रासायनिक ऊष्मप्रवैगिकी में, गतिविधि (प्रतीक a) मिश्रण में रासायनिक प्रजातियों की प्रभावी एकाग्रता का उपाय है, इस अर्थ में कि प्रजातियों की रासायनिक क्षमता वास्तविक समाधान की गतिविधि पर उसी तरह निर्भर करती है जैसे यह आदर्श समाधान के लिए एकाग्रता पर निर्भर करती है। इस अर्थ में गतिविधि शब्द अमेरिकी रसायनज्ञ गिल्बर्ट एन लुईस द्वारा 1907 में गढ़ा गया था।[1] परिपाटी के अनुसार, गतिविधि को आयामहीन मात्रा के रूप में माना जाता है, हालांकि इसका मूल्य प्रजातियों के लिए मानक स्थिति के प्रथागत विकल्पों पर निर्भर करता है। संघनित चरणों (ठोस या तरल) में शुद्ध पदार्थों की गतिविधि को सामान्य रूप से एकता (गणित) (संख्या 1) के रूप में लिया जाता है। गतिविधि अन्य बातों के अलावा तापमान, दबाव और मिश्रण की संरचना पर निर्भर करती है। गैसों के लिए, गतिविधि प्रभावी आंशिक दबाव है, और आमतौर पर इसे उग्रता कहा जाता है।

गतिविधि और एकाग्रता के अन्य उपायों के बीच अंतर इसलिए उत्पन्न होता है क्योंकि गैर-आदर्श गैसों या समाधान (रसायन विज्ञान) में विभिन्न प्रकार के अणुओं के बीच की बातचीत ही प्रकार के अणुओं के बीच की बातचीत से भिन्न होती है। आयन की गतिविधि विशेष रूप से इसके परिवेश से प्रभावित होती है।

गतिविधियों का उपयोग संतुलन स्थिरांक को परिभाषित करने के लिए किया जाना चाहिए, लेकिन व्यवहार में, इसके बजाय अक्सर सांद्रता का उपयोग किया जाता है। प्रतिक्रिया दर के समीकरणों के बारे में अक्सर यही सच होता है। हालाँकि, ऐसी परिस्थितियाँ होती हैं जहाँ गतिविधि और एकाग्रता काफी भिन्न होती हैं और, इस प्रकार, जहाँ गतिविधियों की आवश्यकता होती है, वहाँ सांद्रता के साथ अनुमान लगाना मान्य नहीं होता है। इस बिंदु को स्पष्ट करने के लिए दो उदाहरण प्रस्तुत करते हैं:

  • पोटेशियम हाइड्रोजन आयोडेट KH(IO3)2 0.02 मोलर सांद्रता पर गतिविधि परिकलित हाइड्रोजन आयन सांद्रता से 40% कम होती है, जिसके परिणामस्वरूप अपेक्षा से बहुत अधिक pH होता है।
  • जब मिथाइल हरा पीएच इंडिकेटर वाला 0.1 M हाइड्रोक्लोरिक एसिड सॉल्यूशन मैग्नीशियम क्लोराइड के 5 M सॉल्यूशन में मिलाया जाता है, तो इंडिकेटर का रंग हरे से पीले रंग में बदल जाता है—बढ़ती अम्लता का संकेत देता है—जब वास्तव में एसिड को पतला किया गया हो। यद्यपि कम आयनिक शक्ति (<0.1 M) पर गतिविधि गुणांक एकता के करीब पहुंच जाता है, यह गुणांक वास्तव में उच्च आयनिक शक्ति शासन में आयनिक शक्ति के साथ बढ़ सकता है। हाइड्रोक्लोरिक एसिड समाधान के लिए, न्यूनतम लगभग 0.4 M है।[2]


परिभाषा

एक प्रजाति की सापेक्ष गतिविधि i, निरूपित ai, परिभाषित किया गया[3][4] जैसा:

कहाँ μi प्रजातियों की (दाढ़) रासायनिक क्षमता है i ब्याज की शर्तों के तहत, μo
i
मानक स्थितियों के कुछ परिभाषित सेट के तहत उस प्रजाति की (दाढ़) रासायनिक क्षमता है, R गैस स्थिर है, T थर्मोडायनामिक तापमान है और e ई (गणितीय स्थिरांक) है।

वैकल्पिक रूप से, इस समीकरण को इस प्रकार लिखा जा सकता है:

सामान्य तौर पर, गतिविधि किसी भी कारक पर निर्भर करती है जो रासायनिक क्षमता को बदल देती है। इस तरह के कारकों में शामिल हो सकते हैं: एकाग्रता, तापमान, दबाव, रासायनिक प्रजातियों के बीच बातचीत, विद्युत क्षेत्र आदि। परिस्थितियों के आधार पर, इनमें से कुछ कारक, विशेष रूप से एकाग्रता और बातचीत में, दूसरों की तुलना में अधिक महत्वपूर्ण हो सकते हैं।

गतिविधि मानक स्थिति की पसंद पर निर्भर करती है जैसे कि मानक स्थिति बदलने से गतिविधि भी बदल जाएगी। इसका मतलब यह है कि गतिविधि सापेक्ष शब्द है जो बताता है कि मानक राज्य स्थितियों के तहत यौगिक की तुलना में कितना सक्रिय है। सिद्धांत रूप में, मानक राज्य का चुनाव मनमाना है; हालाँकि, इसे अक्सर गणितीय या प्रायोगिक सुविधा से चुना जाता है। वैकल्पिक रूप से, निरपेक्ष गतिविधि को परिभाषित करना भी संभव है, λ, जो इस प्रकार लिखा गया है:


गतिविधि गुणांक

गतिविधि गुणांक γ, जो आयाम रहित मात्रा भी है, गतिविधि को मापा मोल अंश से संबंधित करता है xi (या yi गैस चरण में), मोलिटी bi, द्रव्यमान अंश (रसायन विज्ञान) wi, दाढ़ एकाग्रता (दाढ़) ci या द्रव्यमान एकाग्रता (रसायन विज्ञान) ρi:[5] : मानक मोलिटी द्वारा विभाजन bo (आमतौर पर 1 mol/kg) या मानक दाढ़ एकाग्रता co (आमतौर पर 1 mol/L) यह सुनिश्चित करने के लिए आवश्यक है कि गतिविधि और गतिविधि गुणांक दोनों आयामहीन हों, जैसा कि पारंपरिक है।[4]

गतिविधि चुने हुए मानक राज्य और संरचना पैमाने पर निर्भर करती है;[5]उदाहरण के लिए, तनु सीमा में यह मोल अंश, द्रव्यमान अंश, या मोलरिटी के संख्यात्मक मान तक पहुँचता है, जो सभी अलग-अलग हैं। हालाँकि, गतिविधि गुणांक समान हैं। जब गतिविधि गुणांक 1 के करीब होता है, तो पदार्थ हेनरी के कानून के अनुसार लगभग आदर्श व्यवहार दिखाता है (लेकिन आदर्श समाधान के अर्थ में जरूरी नहीं)। इन मामलों में, गतिविधि को रचना के उपयुक्त आयाम रहित माप से प्रतिस्थापित किया जा सकता है xi, bi/bo या ci/co. राउल्ट के नियम के संदर्भ में गतिविधि गुणांक को परिभाषित करना भी संभव है: शुद्ध और व्यावहारिक रसायन के अंतर्राष्ट्रीय संघ (IUPAC) ने प्रतीक की सिफारिश की f इस गतिविधि गुणांक के लिए,[4]हालांकि इसे भगोड़ापन के साथ भ्रमित नहीं होना चाहिए।


मानक राज्य


गैसें

अधिकांश प्रयोगशाला स्थितियों में, वास्तविक गैस और आदर्श गैस के व्यवहार में अंतर केवल दबाव और तापमान पर निर्भर करता है, किसी अन्य गैस की उपस्थिति पर नहीं। किसी दिए गए तापमान पर, गैस का प्रभावी दबाव i इसकी उग्रता द्वारा दिया जाता है fi: यह इसके यांत्रिक दबाव से अधिक या कम हो सकता है। ऐतिहासिक परंपरा के अनुसार, फुगसिटी में दबाव का आयाम होता है, इसलिए आयामहीन गतिविधि द्वारा दिया जाता है:

कहाँ φi प्रजातियों का आयामहीन भगोड़ा गुणांक है, yi गैसीय मिश्रण में इसका मोल अंश है (y = 1 शुद्ध गैस के लिए) और p कुल दबाव है। मूल्य po मानक दबाव है: यह डेटा के स्रोत के आधार पर 1 वायुमंडल (इकाई) (101.325 पास्कल (इकाई)|केपीए) या 1 बार (इकाई) (100 केपीए) के बराबर हो सकता है, और इसे हमेशा उद्धृत किया जाना चाहिए।

सामान्य रूप से मिश्रण

एक सामान्य मिश्रण की संरचना को व्यक्त करने का सबसे सुविधाजनक तरीका मोल अंशों का उपयोग करना है xi (लिखा हुआ yi गैस चरण में) प्रणाली में मौजूद विभिन्न घटकों (या रासायनिक प्रजातियों: परमाणुओं या अणुओं) के, जहां

साथ ni, घटक i, और के मोल्स की संख्या n, मिश्रण में मौजूद सभी विभिन्न घटकों के मोल्स की कुल संख्या।

मिश्रण में प्रत्येक घटक की मानक अवस्था को शुद्ध पदार्थ के रूप में लिया जाता है, अर्थात शुद्ध पदार्थ में की गतिविधि होती है। जब गतिविधि गुणांक का उपयोग किया जाता है, तो उन्हें आमतौर पर राउल्ट के नियम के संदर्भ में परिभाषित किया जाता है,

कहाँ fi राउल्ट का कानून गतिविधि गुणांक है: का गतिविधि गुणांक राउल्ट के कानून के अनुसार आदर्श व्यवहार को इंगित करता है।

पतला समाधान (गैर-आयनिक)

पतला घोल में विलेय आमतौर पर राउल्ट के नियम के बजाय हेनरी के नियम का पालन करता है, और दाढ़ की सघनता के संदर्भ में समाधान की संरचना को व्यक्त करना अधिक सामान्य है c (mol/L में) या मोललता b (mol/kg में) विलेय के मोल अंशों के बजाय। तनु विलयन की मानक अवस्था सांद्रता का काल्पनिक विलयन है co= 1 mol/L (या molality bo= 1 mol/kg) जो आदर्श व्यवहार दर्शाता है (जिसे अनंत-कमजोर व्यवहार भी कहा जाता है)। मानक स्थिति, और इसलिए गतिविधि, इस बात पर निर्भर करती है कि रचना के किस माप का उपयोग किया जाता है। मोलिटीज को अक्सर पसंद किया जाता है क्योंकि गैर-आदर्श मिश्रण की मात्रा सख्ती से योज्य नहीं होती है और तापमान पर निर्भर भी होती है: मोलिटी मात्रा पर निर्भर नहीं होती है, जबकि दाढ़ की सांद्रता होती है।[6] विलेय की गतिविधि द्वारा दी गई है:


आयोनिक समाधान

जब विलेय घोल में आयनिक पृथक्करण (उदाहरण के लिए नमक) से गुजरता है, तो सिस्टम निश्चित रूप से गैर-आदर्श हो जाता है और हमें पृथक्करण प्रक्रिया को ध्यान में रखना होगा। धनायनों और ऋणायनों की गतिविधियों को अलग-अलग परिभाषित किया जा सकता है (a+ और a).

एक तरल समाधान में किसी दिए गए आयन का गतिविधि गुणांक (जैसे Ca2+) मापने योग्य नहीं है क्योंकि समाधान में आयन की विद्युत रासायनिक क्षमता को स्वतंत्र रूप से मापना प्रयोगात्मक रूप से असंभव है। (कोई ही समय में आयनों को डाले बिना धनायनों को नहीं जोड़ सकता है)। इसलिए, की धारणाओं का परिचय देता है

मतलब आयनिक गतिविधि

aν
±
= aν+
+
aν

मतलब आयनिक मोलिटी

bν
±
= bν+
+
bν

औसत आयनिक गतिविधि गुणांक

γν
±
= γν+
+
γν

कहाँ ν = ν+ + ν आयनिक पृथक्करण प्रक्रिया में शामिल स्टोइकोमेट्रिक गुणांकों का प्रतिनिधित्व करते हैं

चाहे γ+ और γ अलग से तय नहीं किया जा सकता γ± मापने योग्य मात्रा है जिसे डेबी-हुकेल सिद्धांत का उपयोग करके पर्याप्त तनु प्रणालियों के लिए भी भविष्यवाणी की जा सकती है। उच्च सांद्रता पर इलेक्ट्रोलाइट समाधानों के लिए, डेबी-हुकेल सिद्धांत को विस्तारित करने और प्रतिस्थापित करने की आवश्यकता है, उदाहरण के लिए, पित्जर समीकरण इलेक्ट्रोलाइट समाधान मॉडल द्वारा (उदाहरण के लिए नीचे #बाहरी_लिंक देखें)। मजबूत आयनिक विलेय (पूर्ण पृथक्करण) की गतिविधि के लिए हम लिख सकते हैं:

a2 = aν
±
= γν
±
mν
±

नाप

वाष्पशील प्रजातियों की गतिविधि को मापने का सबसे सीधा तरीका इसके संतुलन आंशिक वाष्प दबाव को मापना है। विलायक के रूप में पानी के लिए, जल गतिविधि awसंतुलित आर्द्रता है। सुक्रोज या सोडियम क्लोराइड जैसे गैर-वाष्पशील घटकों के लिए, यह दृष्टिकोण काम नहीं करेगा क्योंकि उनके पास अधिकांश तापमानों पर औसत दर्जे का वाष्प दबाव नहीं होता है। हालांकि, ऐसे मामलों में इसके बजाय विलायक के वाष्प दबाव को मापना संभव है। गिब्स-ड्यूहेम संबंध का उपयोग करके विलेय के लिए गतिविधियों में एकाग्रता के साथ विलायक वाष्प दबावों में परिवर्तन का अनुवाद करना संभव है।

यह निर्धारित करने का सबसे सरल तरीका है कि किसी घटक की गतिविधि दबाव पर कैसे निर्भर करती है, यह जानते हुए कि वास्तविक समाधान में समाधान के (मोलर) आयतन की तुलना में शुद्ध घटकों के (मोलर) आयतन की एडिटिविटी से विचलन होता है। इसमें आंशिक दाढ़ मात्रा का उपयोग शामिल है, जो दबाव के संबंध में रासायनिक क्षमता में परिवर्तन को मापता है।

प्रजातियों की गतिविधि को निर्धारित करने का अन्य तरीका संपार्श्विक गुणों के हेरफेर के माध्यम से है, विशेष रूप से हिमांक बिंदु अवसाद। हिमांक बिंदु अवसाद तकनीकों का उपयोग करके, संबंध से कमजोर एसिड की गतिविधि की गणना करना संभव है,

कहाँ b′ किसी भी संपार्श्विक गुण माप द्वारा निर्धारित विलेय की कुल संतुलन मात्रा है (इस मामले में ΔTfus), b अनुमापन से प्राप्त नाममात्र मोलिटी है और a प्रजातियों की गतिविधि है।

विद्युत रासायनिक विधियां भी हैं जो गतिविधि और उसके गुणांक के निर्धारण की अनुमति देती हैं।

औसत आयनिक गतिविधि गुणांक का मान γ± विलयन में आयनों की संख्या का अनुमान डेबी-हुकेल समीकरण, डेविस समीकरण या पित्जर समीकरणों से भी लगाया जा सकता है।

एकल आयन गतिविधि मापनीयता पर दोबारा गौर किया गया

प्रचलित दृष्टिकोण कि एकल आयन गतिविधियाँ अमाप्य हैं, या शायद शारीरिक रूप से अर्थहीन भी हैं, इसकी जड़ें 1920 के दशक के अंत में एडवर्ड ए. गुगेनहाइम के काम में हैं।[7] हालांकि, रसायनज्ञ कभी भी एकल आयन गतिविधियों के विचार को नहीं छोड़ पाए हैं। उदाहरण के लिए, पीएच को हाइड्रोजन आयन गतिविधि के ऋणात्मक लघुगणक के रूप में परिभाषित किया गया है। निहितार्थ से, यदि एकल आयन गतिविधियों के भौतिक अर्थ और मापनीयता पर प्रचलित दृष्टिकोण सही है तो यह पीएच को ऊष्मप्रवैगिक रूप से अमापने योग्य मात्राओं की श्रेणी में छोड़ देता है। इस कारण से इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड केमिस्ट्री (आईयूपीएसी) का कहना है कि पीएच की गतिविधि-आधारित परिभाषा केवल काल्पनिक परिभाषा है और आगे कहा गया है कि प्राथमिक पीएच मानकों की स्थापना के लिए 'माप की प्राथमिक विधि' की अवधारणा के अनुप्रयोग की आवश्यकता होती है। ' हार्नड सेल से बंधा हुआ।[8] फिर भी, साहित्य में एकल आयन गतिविधियों की अवधारणा पर चर्चा जारी है, और कम से कम लेखक विशुद्ध रूप से थर्मोडायनामिक मात्रा के संदर्भ में एकल आयन गतिविधियों को परिभाषित करने का दावा करता है। वही लेखक विशुद्ध रूप से थर्मोडायनामिक प्रक्रियाओं के आधार पर एकल आयन गतिविधि गुणांक को मापने का तरीका भी प्रस्तावित करता है।[9]


प्रयोग करें

रासायनिक क्षमता को परिभाषित करने के लिए रासायनिक गतिविधियों का उपयोग किया जाना चाहिए, जहां रासायनिक क्षमता तापमान पर निर्भर करती है T, दबाव p और गतिविधि ai सूत्र के अनुसार:

कहाँ R गैस स्थिर है और μo
i
का मान है μi मानक शर्तों के तहत। ध्यान दें कि एकाग्रता पैमाने की पसंद गतिविधि और मानक राज्य रासायनिक क्षमता दोनों को प्रभावित करती है, जो विशेष रूप से महत्वपूर्ण है जब संदर्भ स्थिति विलायक में विलेय का अनंत कमजोर पड़ना है।

गतिविधियों से जुड़े सूत्रों को इस पर विचार करके सरल बनाया जा सकता है:

  • रासायनिक घोल के लिए:
    • विलायक में एकता की गतिविधि होती है (केवल तनु विलयनों के लिए वैध सन्निकटन)
    • कम सांद्रता पर, विलेय की गतिविधि को मानक सांद्रता पर इसकी सांद्रता के अनुपात में अनुमानित किया जा सकता है:

इसलिए, यह लगभग इसकी एकाग्रता के बराबर है।

  • कम दबाव पर गैस के मिश्रण के लिए, गतिविधि मानक दबाव पर गैस के आंशिक दबाव के अनुपात के बराबर होती है:
    इसलिए, यह 1 वायुमंडल (या 1 बार) के मानक दबाव की तुलना में वायुमंडल (या बार) में आंशिक दबाव के बराबर है।
  • एक ठोस शरीर के लिए, बार में समान, एकल प्रजाति के ठोस में एकता की गतिविधि होती है। शुद्ध द्रव के लिए भी यही बात लागू होती है।

उत्तरार्द्ध राउल्ट के नियम पर आधारित किसी भी परिभाषा से अनुसरण करता है, क्योंकि अगर हम विलेय की सघनता देते हैं x1 शून्य पर जाएं, विलायक का वाष्प दाब p जाएंगे p*. इस प्रकार इसकी गतिविधि a = p/p* एकता में जाएगा। इसका मतलब यह है कि अगर तनु घोल में प्रतिक्रिया के दौरान अधिक विलायक उत्पन्न होता है (उदाहरण के लिए प्रतिक्रिया पानी पैदा करती है) तो हम आमतौर पर इसकी गतिविधि को एकता पर सेट कर सकते हैं।

ठोस और तरल गतिविधियाँ दबाव पर बहुत अधिक निर्भर नहीं करती हैं क्योंकि उनके दाढ़ की मात्रा आमतौर पर छोटी होती है। यदि हम चुनते हैं तो 100 बार पर सीसा की गतिविधि केवल 1.01 होती है po = 1 bar मानक स्थिति के रूप में। बहुत अधिक दबावों पर ही हमें ऐसे परिवर्तनों के बारे में चिंता करने की आवश्यकता है।

उदाहरण मूल्य

जलीय विलयन में सोडियम क्लोराइड के क्रिया गुणांकों के उदाहरण मान तालिका में दिए गए हैं।[10] आदर्श समाधान में, ये सभी मूल्य एकता होंगे। मोललता और तापमान में वृद्धि के साथ विचलन बड़ा हो जाता है, लेकिन कुछ अपवादों के साथ।

Activity coefficients of sodium chloride in aqueous solution
Molality (mol/kg) 25 °C 50 °C 100 °C 200 °C 300 °C 350 °C
0.05 0.820 0.814 0.794 0.725 0.592 0.473
0.50 0.680 0.675 0.644 0.619 0.322 0.182
2.00 0.669 0.675 0.641 0.450 0.212 0.074
5.00 0.873 0.886 0.803 0.466 0.167 0.044


यह भी देखें

संदर्भ

  1. Lewis, Gilbert Newton (1907). "Outlines of a new system of thermodynamic chemistry". Proceedings of the American Academy of Arts and Sciences. 43 (7): 259–293. doi:10.2307/20022322. JSTOR 20022322. ; the term "activity" is defined on p. 262.
  2. McCarty, Christopher G.; Vitz, Ed (2006), "pH Paradoxes: Demonstrating that it is not true that pH ≡ −log[H+]", J. Chem. Educ., 83 (5): 752, Bibcode:2006JChEd..83..752M, doi:10.1021/ed083p752
  3. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "activity (relative activity), a". doi:10.1351/goldbook.A00115
  4. 4.0 4.1 4.2 International Union of Pure and Applied Chemistry (1993). Quantities, Units and Symbols in Physical Chemistry, 2nd edition, Oxford: Blackwell Science. ISBN 0-632-03583-8. pp. 49–50. Electronic version.
  5. 5.0 5.1 McQuarrie, D. A.; Simon, J. D. Physical Chemistry – A Molecular Approach, p. 990 & p. 1015 (Table 25.1), University Science Books, 1997.
  6. Kaufman, Myron (2002), Principles of Thermodynamics, CRC Press, p. 213, ISBN 978-0-8247-0692-0
  7. Guggenheim, E. A. (1929). "The Conceptions of Electrical Potential Difference between Two Phases and the Individual Activities of Ions". J. Phys. Chem. 33 (6): 842–849. doi:10.1021/j150300a003.
  8. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "pH". doi:10.1351/goldbook.P04524
  9. Rockwood, A.L. (2015). "Meaning and measurability of single ion activities, the thermodynamic foundations of pH, and the Gibbs free energy for the transfer of ions between dissimilar materials". ChemPhysChem. 16 (9): 1978–1991. doi:10.1002/cphc.201500044. PMC 4501315. PMID 25919971.
  10. Cohen, Paul (1988), The ASME Handbook on Water Technology for Thermal Systems, American Society of Mechanical Engineers, p. 567, ISBN 978-0-7918-0300-4


बाहरी संबंध