कैलाबी त्रिकोण

From Vigyanwiki
Revision as of 15:09, 14 July 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)
Calabi triangle.svg

कैलाबी त्रिभुज यूजेनियो कैलाबी द्वारा पाया जाने वाला एक विशेष त्रिभुज के रूप में है तथा इसके द्वारा उसके सबसे बड़े वर्ग के लिए तीन भिन्न -भिन्न स्थानों के होने की व्याख्या की गई है।[1] यह एक समद्विबाहु त्रिभुज के रूप में होता है, जो एक अपरिमेय संख्या के साथ ऑब्टुस त्रिभुज के रूप में होता है। लेकिन इसकी भुजाओं की लंबाई और इसके आधार के बीच बीजगणितीय संख्या अनुपात होता है।

परिभाषा

सबसे बड़े वर्ग पर विचार करते है, जिसे एक यादृच्छिक त्रिभुज के रूप में रखा जाता है और ऐसा हो सकता है कि इस प्रकार के वर्ग को त्रिभुज में एक से अधिक विधियों के रूप में रखा जा सकता है। यदि इस प्रकार के सबसे बड़े वर्ग को तीन भिन्न -भिन्न विधियों के रूप में रखा जाता है, तो त्रिभुज या तो समबाहु त्रिभुज या फिर कैलबी त्रिभुज के रूप में होता है।[2][3] इस प्रकार कैलाबी त्रिभुज को ऐसे त्रिभुज के रूप में परिभाषित किया जाता है, जो समबाहु नहीं है और इसके सबसे बड़े वर्ग के लिए तीन स्थान होते है।

आकार

कैलाबी त्रिभुज समद्विबाहु रूप में होता है, किसी भी पैर के आधार का अनुपात होता है,

यह मान त्रिकोणमितीय फलन का उपयोग करके जटिल संख्याओं के बिना भी व्यक्त किया जा सकता है,

यह किसी फलन का सबसे बड़ा धनात्मक मान के रूप में होता है,

कांटीनुएड फ्रैक्शन रिप्रजेंटेशन के रूप में [1, 1, 1, 4, 2, 1, 2, 1, 5, 2, 1, 3, 1, 1, 390, ...] प्रस्तुत करता है।[2]

कैलाबी त्रिभुज आधार कोण 39.1320261...° और तीसरा कोण 101.7359477...° ऑब्टुस त्रिभुज के रूप में होता है।

यह भी देखें

संदर्भ

  1. Calabi, Eugenio (3 Nov 1997). "त्रिकोण में कटे हुए वर्गों के संबंध में प्रमाण की रूपरेखा". Archived from the original on 12 December 2012. Retrieved 3 May 2018.
  2. 2.0 2.1 Weisstein, Eric W. "Calabi's Triangle". MathWorld.
  3. Conway, J.H.; Guy, R.K. (1996). "Calabi's Triangle". संख्याओं की पुस्तक. New York: Springer-Verlag. p. 206.