हर्मिटियन सहायक

From Vigyanwiki

गणित में, विशेष रूप से संकारक सिद्धांत में, आंतरिक उत्पाद स्थान पर प्रत्येक रैखिक संकारक नियम

के अनुसार उस स्थान पर एक हर्मिटियन सहायक (या सहायक) संकारक को परिभाषित करता है, जहां सदिश पर आंतरिक उत्पाद है।

चार्ल्स हर्मिट के बाद सहायक को हर्मिटियन संयुग्म या बस हर्मिटियन भी कहा जा सकता है।[1] इसे प्रायः A द्वारा दर्शाया जाता है भौतिकी जैसे क्षेत्रों में, विशेषतः जब क्वांटम यांत्रिकी में ब्रा-केट संकेत चिन्ह के साथ संयोजन में उपयोग किया जाता है। परिमित आयामों में जहां संकारकों को मैट्रिक्स (गणित) द्वारा दर्शाया जाता है, हर्मिटियन सहायक संयुग्म स्थानांतरण (जिसे हर्मिटियन ट्रांसपोज़ के रूप में भी जाना जाता है) द्वारा दिया जाता है।

सहायक संकारक की उपरोक्त परिभाषा हिल्बर्ट स्थान पर परिबद्ध संचालिका तक शब्दशः विस्तारित होती है। परिभाषा को आगे बढ़ाया गया है ताकि असीमित सघन रूप से परिभाषित संकारक को सम्मिलित किया जा सके, जिनका डोमेन स्थलाकृतिक रूप से सघन (टोपोलॉजी) है - लेकिन जरूरी नहीं कि के बराबर हो।

अनौपचारिक परिभाषा

हिल्बर्ट स्थानों के बीच रेखीय मानचित्र पर विचार करें। किसी भी विवरण का ध्यान रखे बिना, सहायक संकारक (अधिकांश स्थितियों में विशिष्ट रूप से परिभाषित) रैखिक संकारक है जो

को पूरा करता है,

जहां हिल्बर्ट स्थान में आंतरिक उत्पाद है, जो पहले निर्देशांक में रैखिक है और दूसरे निर्देशांक में प्रतिरेखीय है। उस विशेष स्थिति पर ध्यान दें जहां दोनों हिल्बर्ट स्थान समान हैं और उस हिल्बर्ट स्थान पर एक संकारक है।

जब कोई दोहरी जोड़ी के लिए आंतरिक उत्पाद का व्यापार करता है, तो वह एक संकारक के सहायक को परिभाषित कर सकता है, जिसे एक रैखिक मानचित्र का ट्रांसपोज़ भी कहा जाता है। , कहाँ संगत नॉर्म (गणित) के साथ बानाच रिक्त स्थान हैं । यहां (फिर से किसी तकनीकी पर विचार न करते हुए), इसके सहायक संकारक को के साथ के रूप में परिभाषित किया गया है अर्थात के लिए

हिल्बर्ट स्पेस समायोजना में उपरोक्त परिभाषा वास्तव में बानाच स्पेस केस का एक अनुप्रयोग है जब कोई हिल्बर्ट स्पेस को उसके दोहरे के साथ पहचानता है। तब यह स्वाभाविक ही है कि हम एक संकारक का सहायक भी प्राप्त कर सकते हैं , जहां एक हिल्बर्ट स्थान है और बानाच स्थान है। फिर दोहरे को के साथ के रूप में परिभाषित किया जाता है जैसे कि

बनच स्थान के बीच असीमित संकारकों के लिए परिभाषा

होने देना बनच स्थान बनें। कल्पना करना और , और मान लीजिये एक (संभवतः असंबद्ध) रैखिक संकारक है जो सघन रूप से परिभाषित संकारक है (यानी, में सघन है ). फिर इसका सहायक संचालिका को इस प्रकार परिभाषित किया गया है। डोमेन है

.

अब मनमाने ढंग से लेकिन तय के लिए हमलोग तैयार हैं साथ . की पसंद से और की परिभाषा , f (समान रूप से) निरंतर है जैसा . फिर हैन-बानाच प्रमेय द्वारा या वैकल्पिक रूप से निरंतरता द्वारा विस्तार के माध्यम से इसका विस्तार प्राप्त होता है , बुलाया सभी पर परिभाषित . यह तकनीकीता बाद में प्राप्त करने के लिए आवश्यक है एक संकारक के रूप में के बजाय यह भी टिप्पणी करें कि इसका मतलब यह नहीं है सभी पर बढ़ाया जा सकता है लेकिन एक्सटेंशन केवल विशिष्ट तत्वों के लिए काम करता था .

अब हम इसके जोड़ को परिभाषित कर सकते हैं जैसा

मौलिक परिभाषित पहचान इस प्रकार है

के लिए


हिल्बर्ट रिक्त स्थान के बीच परिबद्ध संकारकों के लिए परिभाषा

मान लीजिए H एक जटिल हिल्बर्ट स्थान है, आंतरिक उत्पाद है। एक सतत रैखिक संकारक A : HH पर विचार करें (रैखिक संकारकों के लिए, निरंतरता एक बंधे हुए संकारक होने के बराबर है)। फिर A का जोड़ सतत रैखिक संकारक A : HH है जो

को संतुष्ट करता है।

इस संकारक का अस्तित्व और विशिष्टता रिज़्ज़ प्रतिनिधित्व प्रमेय से अनुसरण करती है।[2]

इसे एक वर्ग मैट्रिक्स के सहायक मैट्रिक्स के सामान्यीकरण के रूप में देखा जा सकता है जिसमें मानक जटिल आंतरिक उत्पाद से जुड़ी समान गुण होते है।

गुण

बाउंडेड संकारक्स के हर्मिटियन सहायक के निम्नलिखित गुण तत्काल हैं:[2]# इनवोलुशन (गणित): A∗∗ = A

  1. अगर A व्युत्क्रमणीय है, तो वैसा ही है A, साथ
  2. एंटीलीनियर मानचित्र|एंटीलीनियरिटी:
    • (A + B) = A + B
    • (λA) = λA, कहाँ λ सम्मिश्र संख्या के सम्मिश्र संयुग्म को दर्शाता है λ
  3. वितरणात्मक संपत्ति#विरोधीवितरणत्व|वितरण-विरोधी : (AB) = BA

यदि हम संकारक मानदंड को परिभाषित करते हैं A द्वारा

तब

[2]

इसके अतिरिक्त,

[2]

एक का कहना है कि एक मानदंड जो इस स्थिति को संतुष्ट करता है वह सबसे बड़े मूल्य की तरह व्यवहार करता है, जो स्व-सहायक संकारकों के मामले से अलग है।

एक जटिल हिल्बर्ट स्थान पर बंधे हुए रैखिक संकारकों का सेट H सहायक ऑपरेशन और संकारक मानदंड के साथ मिलकर C*-बीजगणित का प्रोटोटाइप बनाते हैं।

हिल्बर्ट रिक्त स्थान के बीच सघन रूप से परिभाषित असीमित संकारकों का जोड़

परिभाषा

आंतरिक उत्पाद चलो पहले तर्क में रैखिक रहें. सघन रूप से परिभाषित संकारक A एक जटिल हिल्बर्ट स्थान से H अपने आप में एक रैखिक संचालिका है जिसका डोमेन D(A) का एक सघन रैखिक उपस्थान है H और जिनके मूल्य निहित हैं H.[3] परिभाषा के अनुसार, डोमेन D(A) इसके जोड़ का A सबका समुच्चय है yH जिसके लिए एक है zH संतुष्टि देने वाला

के घनत्व के कारण और रिज़्ज़ प्रतिनिधित्व प्रमेय, विशिष्ट रूप से परिभाषित है, और, परिभाषा के अनुसार, [4] गुण 1.-5. किसी फलन के डोमेन और कोडोमेन के बारे में उचित खंडों के साथ पकड़ें।[clarification needed] उदाहरण के लिए, अंतिम संपत्ति अब यह बताती है (AB) का विस्तार है BA अगर A, B और AB सघन रूप से परिभाषित संकारक हैं।[5]


केर ए*=(मैं ए)

हरएक के लिए रैखिक कार्यात्मक समान रूप से शून्य है, और इसलिए इसके विपरीत, यह धारणा कार्यात्मकता का कारण बनता है समान रूप से शून्य होना। चूंकि कार्यात्मकता स्पष्ट रूप से परिबद्ध है, इसलिए इसकी परिभाषा यह आश्वासन देता है तथ्य यह है कि, हर किसी के लिए पता चलता है कि मान लें कि घना है.

यह संपत्ति यह दर्शाती है तब भी एक स्थलाकृतिक रूप से बंद उपस्थान है क्या नहीं है।

ज्यामितीय व्याख्या

अगर और तो फिर, ये हिल्बर्ट स्थान हैं आंतरिक उत्पाद के साथ एक हिल्बर्ट स्थान है

कहाँ और होने देना सिंपलेक्टिक मैट्रिक्स बनें, यानी फिर ग्राफ

का का ओर्थोगोनल पूरक है

अभिकथन समतुल्यता से अनुसरण करता है

और


परिणाम

*बंद है

एक संकारक यदि ग्राफ़ बंद है स्थलाकृतिक रूप से बंद है लेखाचित्र सहायक संचालिका का एक उपस्थान का ऑर्थोगोनल पूरक है, और इसलिए बंद है।

* सघन रूप से परिभाषित है ⇔ A बंद करने योग्य है

एक संकारक टोपोलॉजिकल क्लोजर होने पर बंद किया जा सकता है ग्राफ का किसी फलन का ग्राफ़ है. तब से एक (बंद) रैखिक उपस्थान है, शब्द फलन को रैखिक संकारक से बदला जा सकता है। इसी कारण से, बंद करने योग्य है यदि और केवल यदि जब तक जोड़ यदि और केवल यदि को सघन रूप से परिभाषित किया गया है बंद करने योग्य है. यह इस तथ्य से निकलता है कि, प्रत्येक के लिए

जो, बदले में, समतुल्यताओं की निम्नलिखित श्रृंखला के माध्यम से सिद्ध होता है:


** = एcl

समापन एक संकारक का वह संकारक है जिसका ग्राफ़ है यदि यह ग्राफ़ किसी फलन का प्रतिनिधित्व करता है। जैसा कि ऊपर बताया गया है, फलन शब्द को संकारक से बदला जा सकता है। आगे, मतलब है कि इसे सिद्ध करने के लिए उसका अवलोकन करें अर्थात। हरएक के लिए वास्तव में,

विशेष रूप से, प्रत्येक के लिए और प्रत्येक उपस्थान अगर और केवल अगर इस प्रकार, और स्थानापन्न प्राप्त


* = (एcl)*

एक बंद करने योग्य संकारक के लिए मतलब है कि वास्तव में,


काउंटरउदाहरण जहां सहायक को सघन रूप से परिभाषित नहीं किया गया है

होने देना कहाँ रैखिक माप है. एक मापने योग्य, परिबद्ध, गैर-समान रूप से शून्य फलन का चयन करें और चुनें परिभाषित करना

यह इस प्रकार है कि उपस्थान सभी शामिल हैं कॉम्पैक्ट समर्थन के साथ कार्य करता है। तब से सघन रूप से परिभाषित किया गया है। हरएक के लिए और

इस प्रकार, सहायक संचालिका की परिभाषा के लिए इसकी आवश्यकता है तब से यह तभी संभव है जब इस कारण से, इस तरह, सघन रूप से परिभाषित नहीं है और समान रूप से शून्य है नतीजतन, बंद करने योग्य नहीं है और इसका कोई दूसरा जोड़ नहीं है


हर्मिटियन संकारक

एक परिबद्ध संचालिका A : HH को हर्मिटियन या स्व-सहायक संचालिका |सेल्फ-सहायक कहा जाता है

जो के बराबर है

[6]

कुछ अर्थों में, ये संकारक वास्तविक संख्याओं की भूमिका निभाते हैं (अपने स्वयं के जटिल संयुग्म के बराबर होते हैं) और एक वास्तविक सदिश स्थल बनाते हैं। वे क्वांटम यांत्रिकी में वास्तविक-मूल्यवान अवलोकन योग्य वस्तुओं के मॉडल के रूप में कार्य करते हैं। संपूर्ण उपचार के लिए स्व-सहायक संकारकों पर लेख देखें।

एंटीलीनियर संकारकों के जोड़

एक एंटीलिनियर मानचित्र के लिए जटिल संयुग्मन की भरपाई के लिए आसन्न की परिभाषा को समायोजित करने की आवश्यकता है। एंटीलीनियर संकारक का एक सहायक संकारक A एक जटिल हिल्बर्ट स्थान पर H एक एंटीलीनियर संकारक है A : HH संपत्ति के साथ:


अन्य जोड़

समीकरण

औपचारिक रूप से श्रेणी सिद्धांत में सहायक फ़ैक्टर के जोड़े के परिभाषित गुणों के समान है, और यहीं से सहायक संचालिका को अपना नाम मिला है।

यह भी देखें

संदर्भ

  1. Miller, David A. B. (2008). वैज्ञानिकों और इंजीनियरों के लिए क्वांटम यांत्रिकी. Cambridge University Press. pp. 262, 280.
  2. 2.0 2.1 2.2 2.3 Reed & Simon 2003, pp. 186–187; Rudin 1991, §12.9
  3. See unbounded operator for details.
  4. Reed & Simon 2003, p. 252; Rudin 1991, §13.1
  5. Rudin 1991, Thm 13.2
  6. Reed & Simon 2003, pp. 187; Rudin 1991, §12.11