कैंटर फलन

From Vigyanwiki
इकाई अंतराल पर कैंटर फलन का ग्राफ़

गणित में, कैंटर फलन एक फलन (गणित) का उदाहरण है जो सतत फलन है, लेकिननिरपेक्ष सांतत्य नहीं है। यह विश्लेषण में विशेष रूप से प्रतिउदाहरण है, क्योंकि यह सतत, व्युत्पन्न और माप के बारे में अनुभवहीन अंतर्ज्ञान को चुनौती देता है। हालाँकि यह हर जगह सतत है और इसका लगभग हर जगह शून्य व्युत्पन्न है, फिर भी इसका मान 0 से 1 हो जाता है क्योंकि इसका तर्क 0 से 1 तक पहुँच जाता है। इस प्रकार, एक अर्थ में फलन बहुत हद तक स्थिरांक जैसा लगता है जो बढ़ नहीं सकता है, और दूसरे में , यह वास्तव में दिष्ट रूप से बढ़ता है।

इसे कैंटर टर्नरी फलन, लेबेस्ग्यू फलन भी कहा जाता है।[1] लेबेस्ग्यू एकल फलन, कैंटोर-विटाली फलन, डेविल्स स्टेरकेस,[2] कैंटर स्टेरकेस फलन,[3] और कैंटर-लेब्सग फलन भी कहा जाता है।[4] जॉर्ज कैंटर Cantor (1884) ने कैंटर फलन प्रारंभ हुआ और उल्लेख किया कि शेफ़र ने बताया कि यह कार्ल गुस्ताव एक्सल हार्नैक द्वारा दावा किए गए कलन का मूलभूत प्रमेय के विस्तार का प्रति उदाहरण था। कैंटर फलन पर शेफ़र (1884), लेब्सग्यू (1904) और विटाली (1905) द्वारा चर्चा की गई और इसे लोकप्रिय बनाया गया है।

परिभाषा

कैंटर फलन का पुनरावृत्त निर्माण

कैंटर फलन को परिभाषित करने के लिए , मान लीजिये , में कोई भी संख्या हो और प्राप्त है निम्नलिखित चरणों द्वारा:

  1. आधार 3 में अभिव्यक्त करना।
  2. यदि आधार-3 का प्रतिनिधित्व इसमें 1 है, पहले 1 के बाद प्रत्येक अंक को सख्ती से 0 से बदलें।
  3. किसी भी बचे हुए 2 को 1 से बदलें।
  4. परिणाम को बाइनरी संख्या के रूप में समझें। परिणाम है .

उदाहरण के लिए:

  • इसका टर्नरी प्रतिनिधित्व 0.02020202 है... कोई 1 नहीं है इसलिए अगला चरण अभी भी 0.02020202 है... इसे 0.01010101 के रूप में फिर से लिखा गया है... यह का द्विआधारी प्रतिनिधित्व है , इसलिए .
  • इसका टर्नरी प्रतिनिधित्व 0.01210121 है... पहले 1 के बाद के अंकों को 0s से प्रतिस्थापित करके 0.01000000 उत्पन्न किया जाता है... इसे दोबारा नहीं लिखा गया है क्योंकि इसमें कोई 2s नहीं है। यह का द्विआधारी प्रतिनिधित्व है , इसलिए .
  • त्रिक प्रतिनिधित्व 0.21102 (या 0.211012222...) है। 0.21 उत्पन्न करने के लिए पहले 1 के बाद के अंकों को 0 से प्रतिस्थापित किया जाता है। इसे 0.11 के रूप में पुनः लिखा गया है। यह का द्विआधारी प्रतिनिधित्व है , इसलिए .

समान रूप से, यदि कैंटर को [0,1] पर सेट किया गया है, फिर कैंटर फलन को के रूप में परिभाषित किया जा सकता है

यह सूत्र अच्छी तरह से परिभाषित है, क्योंकि कैंटर सेट के प्रत्येक सदस्य का एक अद्वितीय आधार 3 प्रतिनिधित्व होता है जिसमें केवल अंक 0 या 2 होते हैं। (कुछ सदस्यों के लिए) , टर्नरी विस्तार 2 के अनुगामी के साथ दोहराया जा रहा है और 1 में समाप्त होने वाला एक वैकल्पिक गैर-दोहराया जाने वाला विस्तार है। उदाहरण के लिए, = 0.13 = 0.02222...3 कैंटर सेट का सदस्य है)। तब से और , और पर एकरस है , यह स्पष्ट है कि सभी के लिए भी धारण करता है .

गुण

कैंटर फलन सतत फलन और माप (गणित) के बारे में अनुभवहीन अंतर्ज्ञान को चुनौती देता है; यद्यपि यह हर जगह सतत है और लगभग हर जगह इसका व्युत्पन्न शून्य है, 0 से 1 तक चला जाता है 0 से 1 तक जाता है, और बीच में प्रत्येक मान लेता है। कैंटर फलन एक वास्तविक फलन का सबसे अक्सर उद्धृत उदाहरण है जो समान रूप से सतत है (सटीकता से, यह घातांक α = log 2/log 3 का होल्डर सतत है) लेकिन निरपेक्ष सांतत्य नहीं है। यह फॉर्म के अंतराल पर स्थिर है (0.x1x2x3...एक्सn022222..., 0.x1x2x3...एक्सn200000...), और कैंटर सेट में मौजूद प्रत्येक बिंदु इन अंतरालों में से एक में नहीं है, इसलिए इसका व्युत्पन्न कैंटर सेट के बाहर 0 है। दूसरी ओर, ऊपर वर्णित अंतराल समापन बिंदु वाले कैंटर सेट के बेशुमार उपसमुच्चय में किसी भी बिंदु पर इसका कोई व्युत्पन्न नहीं है।

कैंटर फलन को कैंटर सेट पर समर्थित 1/2-1/2 बर्नौली माप μ के संचयी वितरण फलन के रूप में भी देखा जा सकता है: . इस संभाव्यता वितरण, जिसे कैंटर वितरण कहा जाता है, का कोई अलग भाग नहीं है। अर्थात् संगत माप परमाणु (माप सिद्धांत) है। यही कारण है कि फलन में कोई जम्प असंततता नहीं है; ऐसी कोई भी छलांग माप में एक परमाणु के अनुरूप होगी।

हालाँकि, कैंटर फलन के किसी भी गैर-स्थिर भाग को संभाव्यता घनत्व फलन के अभिन्न अंग के रूप में प्रस्तुत नहीं किया जा सकता है; किसी भी अनुमानित संभाव्यता घनत्व फलन को एकीकृत करना जो किसी भी अंतराल पर लगभग हर जगह शून्य नहीं है, कुछ अंतराल को सकारात्मक संभावना देगा जिसके लिए यह वितरण संभाव्यता शून्य प्रदान करता है। विशेष रूप से, जैसे Vitali (1905) बताया गया है, फलन इसके व्युत्पन्न का अभिन्न अंग नहीं है, भले ही व्युत्पन्न लगभग हर जगह मौजूद है।

कैंटर फलन एक एकल फलन का मानक उदाहरण है।

कैंटर फलन गैर-घटता नहीं है, और इसलिए विशेष रूप से इसका ग्राफ एक सुधार योग्य वक्र को परिभाषित करता है। Scheeffer (1884)दिखाया कि इसके ग्राफ की चाप लंबाई 2 है। ध्यान दें कि किसी भी गैर-घटते फलन का ग्राफ ऐसा है कि और इसकी लंबाई 2 से अधिक नहीं है। इस अर्थ में, कैंटर फलन चरम है।

निरपेक्ष सांतत्य का अभाव

क्योंकि बेशुमार सेट कैंटर सेट का लेब्सेग माप 0 है, किसी भी सकारात्मक ε < 1 और δ के लिए, कुल लंबाई <δ के साथ जोड़ीदार असंयुक्त उप-अंतराल का एक सीमित अनुक्रम मौजूद है, जिस पर कैंटर फलन संचयी रूप से ε से अधिक बढ़ जाता है।

वास्तव में, प्रत्येक δ > 0 के लिए परिमित रूप से कई जोड़ीदार असंयुक्त अंतराल होते हैं (xक</उप>,यk) (1 ≤ k ≤ M) के साथ और .

वैकल्पिक परिभाषाएँ

पुनरावृत्तीय निर्माण

Cantor function sequence.png

नीचे हम एक अनुक्रम परिभाषित करते हैं {एफnइकाई अंतराल पर कार्यों का } जो कैंटर फलन में परिवर्तित होता है।

चलो एफ0(एक्स) = एक्स.

फिर, प्रत्येक पूर्णांक के लिए n ≥ 0, अगला फलन fn+1(x) को f के संदर्भ में परिभाषित किया जाएगाn(एक्स) इस प्रकार है:

चलो एफn+1(x)= 1/2 × fn(3x), कब 0 ≤ x ≤ 1/3 ;

चलो एफn+1(x)= 1/2, कब 1/3 ≤ x ≤ 2/3 ;

चलो एफn+1(x)= 1/2 + 1/2 × fn(3 x − 2), कब 2/3 ≤ x ≤ 1.

तीन परिभाषाएँ अंत-बिंदु 1/3 और 2/3 पर संगत हैं, क्योंकि fn(0)=0 और एफn(1)=प्रत्येक एन के लिए 1, प्रेरण द्वारा। कोई यह जांच सकता है कि एफn ऊपर परिभाषित कैंटर फलन में बिंदुवार अभिसरण होता है। इसके अलावा, अभिसरण एक समान है। दरअसल, एफ की परिभाषा के अनुसार, तीन मामलों में अलग करनाn+1, कोई उसे देखता है

यदि f सीमा फलन को दर्शाता है, तो यह इस प्रकार है कि, प्रत्येक n ≥ 0 के लिए,

इसके अलावा आरंभिक फलन का चुनाव वास्तव में कोई मायने नहीं रखता, बशर्ते कि एफ0(0)=0, एफ0(1)=1 और एफ0 बंधा हुआ फलन है[citation needed].

भग्न आयतन

कैंटर फलन का कैंटर सेट से गहरा संबंध है। कैंटर सेट सी को अंतराल [0,1] में उन संख्याओं के सेट के रूप में परिभाषित किया जा सकता है, जिनके आधार (घातांक) | आधार-3 (त्रिकोणीय) विस्तार में अंक 1 शामिल नहीं है, सिवाय इसके कि 1 के बाद आता है केवल शून्य (जिस स्थिति में पुच्छ 1000 0222 द्वारा प्रतिस्थापित किया जा सकता है किसी एक से छुटकारा पाने के लिए 1). यह पता चला है कि कैंटर सेट एक भग्न है जिसमें (बेशुमार) अनंत कई बिंदु (शून्य-आयामी मात्रा) हैं, लेकिन शून्य लंबाई (एक-आयामी मात्रा) है। केवल डी-आयामी आयतन (हॉसडॉर्फ़ आयाम के अर्थ में|हॉसडॉर्फ़-माप) एक सीमित मान लेता है, जहां सी का फ्रैक्टल आयाम है। हम कैंटर फलन को कैंटर सेट के अनुभागों के डी-आयामी वॉल्यूम के रूप में वैकल्पिक रूप से परिभाषित कर सकते हैं


स्वयं-समानता

कैंटर फलन में कई समरूपताएं होती हैं। के लिए , एक प्रतिबिंब समरूपता है

और आवर्धन की एक जोड़ी, एक बाईं ओर और एक दाईं ओर:

और

आवर्धन को कैस्केड किया जा सकता है; वे डायडिक मोनोइड उत्पन्न करते हैं। इसे कई सहायक कार्यों को परिभाषित करके प्रदर्शित किया जाता है। प्रतिबिंब को इस प्रकार परिभाषित करें

प्रथम स्व-समरूपता को इस प्रकार व्यक्त किया जा सकता है

जहां प्रतीक फलन संरचना को दर्शाता है। वह है, और इसी तरह अन्य मामलों के लिए भी। बाएँ और दाएँ आवर्धन के लिए, बाएँ-मैपिंग लिखें

और

तब कैंटर फलन का पालन होता है

इसी प्रकार, सही मैपिंग को इस प्रकार परिभाषित करें

और

फिर, इसी तरह,

उसमें दोनों पक्षों को एक दूसरे पर प्रतिबिंबित किया जा सकता है

और इसी तरह,

इन परिचालनों को मनमाने ढंग से स्टैक किया जा सकता है। उदाहरण के लिए, बाएँ-दाएँ चालों के क्रम पर विचार करें सबस्क्रिप्ट सी और डी जोड़ना, और, स्पष्टता के लिए, कंपोज़िशन ऑपरेटर को हटाना कुछ स्थानों को छोड़कर सभी में, एक है:

एल और आर अक्षरों में मनमाना परिमित-लंबाई वाले तार डायडिक परिमेय के अनुरूप हैं, जिसमें प्रत्येक डायडिक परिमेय को दोनों के रूप में लिखा जा सकता है पूर्णांक n और m के लिए और बिट्स की सीमित लंबाई के रूप में साथ इस प्रकार, प्रत्येक डायडिक परिमेय कैंटर फलन की कुछ आत्म-समरूपता के साथ एक-से-एक पत्राचार में है।

कुछ सांकेतिक पुनर्व्यवस्थाएं उपरोक्त को व्यक्त करना थोड़ा आसान बना सकती हैं। मान लीजिये और एल और आर के लिए खड़ा है। फलन संरचना इसे एक मोनोइड तक विस्तारित करती है, जिसमें कोई भी लिख सकता है और आम तौर पर, अंक ए, बी की कुछ बाइनरी स्ट्रिंग के लिए, जहां एबी ऐसी स्ट्रिंग का सामान्य संयोजन है। डायडिक मोनॉइड एम तब ऐसी सभी परिमित-लंबाई वाली बाएँ-दाएँ चालों का मोनॉइड है। लिखना मोनॉइड के एक सामान्य तत्व के रूप में, कैंटर फलन की एक समान आत्म-समरूपता है:

डायडिक मोनॉइड में स्वयं कई दिलचस्प गुण हैं। इसे एक अनंत द्विआधारी वृक्ष के नीचे बाएँ-दाएँ चालों की एक सीमित संख्या के रूप में देखा जा सकता है; पेड़ पर असीम रूप से दूर की पत्तियाँ कैंटर सेट के बिंदुओं से मेल खाती हैं, और इसलिए, मोनॉइड कैंटर सेट की आत्म-समरूपता का भी प्रतिनिधित्व करता है। वास्तव में, आमतौर पर पाए जाने वाले फ्रैक्टल्स के एक बड़े वर्ग का वर्णन डायडिक मोनॉयड द्वारा किया जाता है; अतिरिक्त उदाहरण राम का वक्र पर लेख में पाए जा सकते हैं। आत्म-समानता रखने वाले अन्य फ्रैक्टल्स को अन्य प्रकार के मोनोइड्स के साथ वर्णित किया गया है। डायडिक मोनॉइड स्वयं मॉड्यूलर समूह का एक उप-मोनॉइड है ध्यान दें कि कैंटर फलन मिंकोव्स्की के प्रश्न-चिह्न फलन से कहीं अधिक समानता रखता है। विशेष रूप से, यह बिल्कुल उसी समरूपता संबंधों का पालन करता है, यद्यपि परिवर्तित रूप में।

सामान्यीकरण

होने देना

वास्तविक संख्या 0 ≤ y ≤ 1 का द्विआधारी अंक b के संदर्भ में द्विघात परिमेय (बाइनरी) विस्तार होk ∈ {0,1}. डायडिक परिवर्तन पर लेख में इस विस्तार पर अधिक विस्तार से चर्चा की गई है। फिर फलन पर विचार करें

Z = 1/3 के लिए, फलन का व्युत्क्रम x = 2 C1/3(y) कैंटर फलन है। अर्थात्, y = y(x) कैंटर फलन है। सामान्य तौर पर, किसी भी z<1/2, C के लिएz(y) ऐसा लगता है जैसे कैंटर फलन अपनी तरफ मुड़ गया है, जैसे-जैसे z शून्य के करीब पहुंचता है, चरणों की चौड़ाई चौड़ी होती जाती है।

जैसा कि ऊपर उल्लेख किया गया है, कैंटर फलन कैंटर सेट पर एक माप का संचयी वितरण फलन भी है। कैंटर सेट या अन्य फ्रैक्टल्स पर समर्थित विभिन्न परमाणु-कम संभाव्यता उपायों पर विचार करके विभिन्न कैंटर फ़ंक्शंस, या डेविल्स स्टेरकेस प्राप्त की जा सकती हैं। जबकि कैंटर फलन में लगभग हर जगह व्युत्पन्न 0 है, वर्तमान शोध उन बिंदुओं के सेट के आकार के सवाल पर केंद्रित है जहां ऊपरी दाएं व्युत्पन्न निचले दाएं व्युत्पन्न से अलग है, जिससे व्युत्पन्न मौजूद नहीं है। भिन्नता का यह विश्लेषण आमतौर पर फ्रैक्टल आयाम के संदर्भ में दिया जाता है, जिसमें हॉसडॉर्फ आयाम सबसे लोकप्रिय विकल्प है। अनुसंधान की यह श्रृंखला 1990 के दशक में डर्स्ट द्वारा शुरू की गई थी,[5] जिन्होंने दिखाया कि कैंटर फलन की गैर-भिन्नता के सेट का हॉसडॉर्फ आयाम कैंटर सेट के आयाम का वर्ग है, . इसके बाद केनेथ फाल्कनर (गणितज्ञ)[6] पता चला कि यह वर्ग संबंध अहलफोर के सभी नियमित, एकल उपायों के लिए लागू होता है, अर्थात।

बाद में, ट्रोस्चिट[7] सेट की अधिक व्यापक तस्वीर प्राप्त करें जहां स्व-अनुरूप और स्व-समानता | स्व-समान सेट पर समर्थित अधिक सामान्यीकृत गिब के उपायों के लिए व्युत्पन्न मौजूद नहीं है।

हरमन मिन्कोव्स्की का मिन्कोव्स्की का प्रश्न चिह्न फलन देखने में कैंटर फलन से मिलता-जुलता है, जो बाद वाले के एक सुव्यवस्थित रूप के रूप में दिखाई देता है; इसका निर्माण सतत अंश विस्तार से बाइनरी विस्तार में जाकर किया जा सकता है, जैसे कैंटर फलन का निर्माण टर्नरी विस्तार से बाइनरी विस्तार में जाकर किया जा सकता है। प्रश्न चिह्न फलन में सभी परिमेय संख्याओं के लुप्त हो जाने वाले व्युत्पन्न होने का दिलचस्प गुण है।

यह भी देखें

  • डायडिक परिवर्तन
  • वीयरस्ट्रैस फलन, एक ऐसा फलन जो हर जगह सतत है लेकिन कहीं भी भिन्न नहीं है।

टिप्पणियाँ

  1. Vestrup 2003, Section 4.6.
  2. Thomson, Bruckner & Bruckner 2008, p. 252.
  3. "Cantor Staircase Function".
  4. Bass 2013, p. 28.
  5. Darst, Richard (1993-09-01). "The Hausdorff Dimension of the Nondifferentiability Set of the Cantor Function is [ ln(2)/ln(3) ]2". Proceedings of the American Mathematical Society. 119 (1): 105–108. doi:10.2307/2159830. JSTOR 2159830.
  6. Falconer, Kenneth J. (2004-01-01). "एक तरफा मल्टीफ्रैक्टल विश्लेषण और शैतान की सीढ़ियों की गैर-विभेदीकरण के बिंदु". Mathematical Proceedings of the Cambridge Philosophical Society. 136 (1): 167–174. Bibcode:2004MPCPS.136..167F. doi:10.1017/S0305004103006960. ISSN 1469-8064. S2CID 122381614.
  7. Troscheit, Sascha (2014-03-01). "Hölder differentiability of self-conformal devil's staircases". Mathematical Proceedings of the Cambridge Philosophical Society. 156 (2): 295–311. arXiv:1301.1286. Bibcode:2014MPCPS.156..295T. doi:10.1017/S0305004113000698. ISSN 1469-8064. S2CID 56402751.


संदर्भ


बाहरी संबंध