स्थानीय समतलता
सांस्थितिकी में, गणित की एक शाखा, स्थानीय समतलता निष्कोणता की स्थिति है जिसे सांस्थितिक सबमैनिफोल्ड्स पर लगाया जा सकता है। सांस्थितिक मैनिफोल्ड्स की श्रेणी में, स्थानीय रूप से समतल सबमैनिफोल्ड्स निष्कोण मैनिफोल्ड्स की श्रेणी में अंतःस्थापित सबमैनिफोल्ड्स के समान भूमिका निभाते हैं। स्थानीय समतलता का उल्लंघन सामग्री प्रसंस्करण और मैकेनिकल इंजीनियरिंग के अनुप्रयोगों के साथ रिज नेटवर्क और टूटी हुई संरचनाओं का वर्णन करता है।
परिभाषा
मान लीजिए कि एक डी डायमेंशनल मैनिफोल्ड एन एक एन डायमेंशनल मैनिफोल्ड एम (जहां डी < एन) में एम्बेडेड है। अगर यदि कोई पड़ोस है तो हम कहते हैं कि N, x पर 'स्थानीय रूप से समतल' है x का ऐसा कि टोपोलॉजिकल जोड़ी जोड़ी के लिए होम्योमॉर्फिक है , के मानक समावेशन के साथ अर्थात्, एक समरूपता विद्यमान है ऐसी कि छवि (गणित) की के साथ मेल खाता है . आरेखीय शब्दों में, निम्नलिखित आवागमन वर्ग: हम M में N को 'स्थानीय रूप से समतल' कहते हैं यदि N प्रत्येक बिंदु पर स्थानीय रूप से समतल है। इसी तरह, एक नक्शा इसे स्थानीय रूप से फ्लैट कहा जाता है, भले ही यह एम्बेडिंग न हो, यदि एन में प्रत्येक एक्स में पड़ोस यू है जिसकी छवि एम में स्थानीय रूप से समतल है।
सीमा के साथ कई गुना में
उपरोक्त परिभाषा मानती है कि, यदि M की एक सीमा (टोपोलॉजी) है, तो x, M का सीमा बिंदु नहीं है। यदि x, M की सीमा पर एक बिंदु है तो परिभाषा को निम्नानुसार संशोधित किया गया है। हम कहते हैं कि यदि कोई पड़ोस है तो M के सीमा बिंदु x पर N 'स्थानीय रूप से समतल' है x का ऐसा कि टोपोलॉजिकल जोड़ी जोड़ी के लिए होमोमोर्फिक है , कहाँ एक मानक अर्ध-स्थान (ज्यामिति)|आधा-स्थान और है इसकी सीमा के मानक उपस्थान के रूप में शामिल है।
परिणाम
एक एम्बेडिंग की स्थानीय समतलता का तात्पर्य उन मजबूत गुणों से है जो सभी एम्बेडिंग द्वारा साझा नहीं किए जाते हैं। ब्राउन (1962) ने सिद्ध किया कि यदि d = n − 1, तो N कॉलरयुक्त है; अर्थात्, इसका एक पड़ोस है जो N × [0,1] के समरूप है, जबकि N स्वयं N × 1/2 (यदि N, M के आंतरिक भाग में है) या N × 0 (यदि N की सीमा में है) के अनुरूप है। एम)।
यह भी देखें
संदर्भ
- Brown, Morton (1962), Locally flat imbeddings [sic] of topological manifolds. Annals of Mathematics, Second series, Vol. 75 (1962), pp. 331–341.
- Mazur, Barry. On embeddings of spheres. Bulletin of the American Mathematical Society, Vol. 65 (1959), no. 2, pp. 59–65. http://projecteuclid.org/euclid.bams/1183523034.