शून्य और ध्रुव

From Vigyanwiki
Revision as of 23:08, 10 July 2023 by alpha>Ompathak

सम्मिश्र विश्लेषण (गणित की एक शाखा) में, ध्रुव एक सम्मिश्र संख्या चर के सम्मिश्र-मूल्य वाले फलन की एक निश्चित प्रकार की विलक्षणता (गणित) है। यह ऐसे फलन की गैर-हटाने योग्य विलक्षणता का सबसे सरल प्रकार है (आवश्यक विलक्षणता देखें)। तकनीकी रूप से, एक बिंदु z0 किसी फलन का ध्रुव है f यदि यह फलन के किसी फलन का शून्य है 1/f और 1/f कुछ नजदीक (गणित) में होलोमोर्फिक फलन (यानी सम्मिश्र भिन्न) है z0.

एक फलन f एक विवृत समुच्चय में मेरोमोर्फिक फलन है U यदि प्रत्येक बिंदु के लिए z का U का एक नजदीक है z जिसमें या तो f या 1/f होलोमोर्फिक है।

अगर f मेरोमोर्फिक है U, फिर शून्य f का एक ध्रुव है 1/f, और का एक ध्रुव f का एक शून्य है 1/f. यह शून्य और ध्रुवों के बीच द्वंद्व उत्पन्न करता है, जो मेरोमोर्फिक कार्यों के अध्ययन के लिए मौलिक है। उदाहरण के लिए, यदि कोई फलन पूरे सम्मिश्र विमान और अनंत पर बिंदु पर मेरोमोर्फिक है, तो उसके ध्रुवों की बहुलता (गणित) का योग उसके शून्यों की बहुलता के योग के बराबर होता है।

परिभाषाएँ

सम्मिश्र चर का एक कार्य z एक विवृत समुच्चय में होलोमोर्फिक फलन है U यदि यह के संबंध में अवकलनीय कार्य है z के हर बिंदु पर U. समान रूप से, यह होलोमोर्फिक है यदि यह विश्लेषणात्मक कार्य है, अर्थात, यदि इसकी टेलर श्रृंखला प्रत्येक बिंदु पर उपस्थित है U, और बिंदु के कुछ नजदीक (गणित) में फलन में परिवर्तित हो जाता है। एक फलन मेरोमोर्फिक फलन है U यदि प्रत्येक बिंदु U के नजदीक ऐसा भी है f या 1/f इसमें होलोमोर्फिक है।

मेरोमोर्फिक फलन के फलन का शून्य f एक सम्मिश्र संख्या है z ऐसा है कि f(z) = 0. का एक खंभा f का एक शून्य है 1/f.

अगर f एक फलन है जो एक बिंदु के नजदीक मेरोमोर्फिक है सम्मिश्र तल का, तब एक पूर्णांक उपस्थित होता है n ऐसा है कि

के नजदीक होलोमोर्फिक और नॉनज़रो है (यह विश्लेषणात्मक संपत्ति का परिणाम है)। अगर n > 0, तब 'आदेश' (या बहुलता) का एक ध्रुव है n का f. अगर n < 0, तब आदेश का शून्य है का f. सरल शून्य और सरल ध्रुव ऐसे शब्द हैं जिनका उपयोग शून्य और क्रम के ध्रुवों के लिए किया जाता है डिग्री को कभी-कभी ऑर्डर के पर्यायवाची के रूप में उपयोग किया जाता है।

शून्य और ध्रुव के इस लक्षण वर्णन से पता चलता है कि शून्य और ध्रुव पृथक बिंदु हैं, अर्थात प्रत्येक शून्य या ध्रुव के नजदीक होता है जिसमें कोई अन्य शून्य और ध्रुव नहीं होता है।

शून्य और ध्रुवों के क्रम को एक गैर-ऋणात्मक संख्या के रूप में परिभाषित किए जाने के कारण n और उनके बीच समरूपता, क्रम के ध्रुव पर विचार करना प्रायः उपयोगी होता है n ऑर्डर के शून्य के रूप में n और ऑर्डर का शून्य n व्यवस्था के ध्रुव के रूप में n. इस स्थिति में एक बिंदु जो न तो ध्रुव है और न ही शून्य है, उसे क्रम 0 के ध्रुव (या शून्य) के रूप में देखा जाता है।

एक मेरोमॉर्फिक फलन में अनंत रूप से कई शून्य और ध्रुव हो सकते हैं। यह गामा फलन (इन्फोबॉक्स में छवि देखें) की स्थिति है, जो पूरे सम्मिश्र विमान में मेरोमोर्फिक है, और प्रत्येक गैर-धनात्मक पूर्णांक पर एक सरल ध्रुव है। रीमैन ज़ेटा फलन पूरे सम्मिश्र विमान में भी मेरोमोर्फिक है, जिसमें क्रम 1 का एकल ध्रुव है z = 1. बाएं आधे तल में इसके शून्य सभी ऋणात्मक सम पूर्णांक हैं, और रीमैन परिकल्पना यह अनुमान है कि अन्य सभी शून्य साथ में हैं Re(z) = 1/2.

बिंदु के नजदीक एक गैर-शून्य मेरोमोर्फिक फलन f अधिकतम परिमित मुख्य भाग वाली लॉरेंट श्रृंखला का योग है ( ऋणात्मक सूचकांक मान वाले पद):

जहाँ n एक पूर्णांक है, और फिर, यदि n > 0 (योग प्रारम्भ होता है , प्रमुख भाग है n शर्तें), किसी के पास आदेश का एक ध्रुव है n, और अगर n ≤ 0 (योग प्रारम्भ होता है , कोई प्रमुख भाग नहीं है), एक के पास क्रम का शून्य है .

अनंत पर

एक फलन अनंत पर मेरोमोर्फिक है यदि यह अनंत के किसी नजदीक में मेरोमोर्फिक है (जो कि कुछ डिस्क (गणित) के बाहर है), और एक पूर्णांक है n ऐसा है कि

उपस्थित है और एक शून्येतर सम्मिश्र संख्या है।

इस स्थिति में, अनंत पर बिंदु क्रम का ध्रुव है n अगर n > 0, और ऑर्डर का शून्य अगर n < 0.

उदाहरण के लिए, डिग्री का एक बहुपद n डिग्री का पोल है n अनंत पर.

अनंत पर एक बिंदु द्वारा विस्तारित सम्मिश्र विमान को रीमैन क्षेत्र कहा जाता है।

अगर f फलन है जो पूरे रीमैन क्षेत्र पर मेरोमॉर्फिक है, फिर इसमें शून्य और ध्रुवों की एक सीमित संख्या होती है, और इसके ध्रुवों के आदेशों का योग इसके शून्यों के आदेशों के योग के बराबर होता है।

प्रत्येक तर्कसंगत फलन पूरे रीमैन क्षेत्र पर मेरोमोर्फिक है, और, इस स्थिति में, शून्य या ध्रुवों के आदेशों का योग अंश और हर की डिग्री का अधिकतम है।

उदाहरण

घात 9 के एक बहुपद में ∞ पर क्रम 9 का एक ध्रुव होता है, यहां रीमैन क्षेत्र के डोमेन रंग द्वारा प्लॉट किया गया है।

* कार्यक्रम

पूरे रीमैन क्षेत्र पर मेरोमोर्फिक है। इसमें ऑर्डर 1 का एक पोल या साधारण पोल होता है और अनंत पर एक साधारण शून्य.
  • कार्यक्रम
पूरे रीमैन क्षेत्र पर मेरोमोर्फिक है। इसमें ऑर्डर 2 का एक पोल है और क्रम 3 का एक खंभा . इसमें एक साधारण शून्य है और अनंत पर एक चौगुना शून्य।
  • कार्यक्रम
संपूर्ण सम्मिश्र तल में मेरोमोर्फिक है, लेकिन अनंत पर नहीं। इसमें क्रम 1 के ध्रुव हैं . इसे टेलर श्रृंखला लिखकर देखा जा सकता है मूल के आसपास.
  • कार्यक्रम
क्रम 1 के अनंत पर एक एकल ध्रुव है, और मूल पर एक एकल शून्य है।

तीसरे को छोड़कर उपरोक्त सभी उदाहरण तर्कसंगत फलन हैं। ऐसे फलनों के शून्यों और ध्रुवों की सामान्य चर्चा के लिए देखें ध्रुव-शून्य कथानक § सतत-समय प्रणाली.

वक्र पर कार्य

शून्य और ध्रुवों की अवधारणा स्वाभाविक रूप से एक सम्मिश्र वक्र पर कार्यों तक फैली हुई है, जो कि आयाम एक (सम्मिश्र संख्याओं पर) का सम्मिश्र विश्लेषणात्मक मैनिफोल्ड है। ऐसे वक्रों के सबसे सरल उदाहरण सम्मिश्र तल और रीमैन सतह हैं। यह विस्तार एटलस (टोपोलॉजी) के माध्यम से संरचनाओं और गुणों को स्थानांतरित करके किया जाता है, जो विश्लेषणात्मक समाकृतिकता हैं।

अधिक सटीक रूप से, चलो f एक सम्मिश्र वक्र से एक फलन बनें M संमिश्र संख्याओं के लिए। यह फलन एक बिंदु के नजदीक में होलोमोर्फिक (सम्मान मेरोमोर्फिक) है z का M यदि कोई चार्ट है ऐसा है कि के नजदीक में होलोमोर्फिक (सम्मान मेरोमोर्फिक) है तब, z एक ध्रुव या क्रम का शून्य है n यदि यही सत्य है यदि वक्र सघन स्थान है, और कार्य f पूरे वक्र पर मेरोमोर्फिक है, तो शून्य और ध्रुवों की संख्या सीमित है, और ध्रुवों के आदेशों का योग शून्यों के आदेशों के योग के बराबर है। यह उन बुनियादी तथ्यों में से एक है जो रीमैन-रोच प्रमेय में सम्मिलित हैं।

यह भी देखें

संदर्भ

  • Conway, John B. (1986). Functions of One Complex Variable I. Springer. ISBN 0-387-90328-3.
  • Conway, John B. (1995). Functions of One Complex Variable II. Springer. ISBN 0-387-94460-5.
  • Henrici, Peter (1974). Applied and Computational Complex Analysis 1. John Wiley & Sons.

बाहरी संबंध