फ़्लोर होमोलॉजी
गणित में, फ़्लोर होमोलॉजी (गणित) सिंपलेक्टिक ज्यामिति और निम्न-आयामी टोपोलॉजी का अध्ययन करने के लिए उपकरण है। फ़्लोर होमोलॉजी उपन्यास अपरिवर्तनीय (गणित) है जो परिमित-आयामी मोर्स होमोलॉजी के अनंत-आयामी एनालॉग के रूप में उत्पन्न होता है। एंड्रियास फ़्लोर ने सहानुभूति ज्यामिति में अर्नोल्ड अनुमान के अपने प्रमाण में फ़्लोर होमोलॉजी का पहला संस्करण पेश किया, जिसे अब लैग्रेंजियन फ़्लोर होमोलॉजी कहा जाता है। फ़्लोअर ने सिंपलेक्टिक मैनिफोल्ड (गणित) के लैग्रेंजियन सबमैनिफोल्ड्स के लिए निकट से संबंधित सिद्धांत भी विकसित किया। तीसरा निर्माण, फ़्लोर के कारण भी, यांग-मिल्स सिद्धांत | यांग-मिल्स कार्यात्मक का उपयोग करके होमोलॉजी समूहों को बंद त्रि-आयामी मैनिफोल्ड्स से जोड़ता है। ये निर्माण और उनके वंशज सिम्प्लेक्टिक और संपर्क मैनिफोल्ड्स के साथ-साथ (सुचारू) तीन- और चार-आयामी मैनिफोल्ड्स की टोपोलॉजी में वर्तमान जांच में मौलिक भूमिका निभाते हैं।
फ़्लोर होमोलॉजी को आम तौर पर रुचि की वस्तु के साथ अनंत-आयामी मैनिफोल्ड और उस पर वास्तविक मूल्यवान फ़ंक्शन को जोड़कर परिभाषित किया जाता है। सिंपलेक्टिक संस्करण में, यह सिंपलेक्टिक मैनिफोल्ड का फ्री लूप स्पेस है जिसमें सिंपलेक्टिक एक्शन फंक्शनल है। थ्री-मैनिफोल्ड्स के लिए ( पल ) संस्करण के लिए, यह चेर्न-साइमन्स फ़ंक्शनल के साथ त्रि-आयामी मैनिफोल्ड पर एसयू(2)-कनेक्शन (गणित) का स्थान है। शिथिल रूप से कहें तो, फ़्लोर होमोलॉजी अनंत-आयामी मैनिफोल्ड पर फ़ंक्शन की मोर्स होमोलॉजी है। फ़्लोर श्रृंखला जटिल फ़ंक्शन के महत्वपूर्ण बिंदु (गणित) (या संभवतः महत्वपूर्ण बिंदुओं के कुछ संग्रह) द्वारा फैले एबेलियन समूह से बनता है। श्रृंखला परिसर के विभेदक रूप को महत्वपूर्ण बिंदुओं (या उनके संग्रह) के कुछ जोड़े को जोड़ने वाले फ़ंक्शन की ढाल प्रवाह रेखाओं की गणना करके परिभाषित किया गया है। फ़्लोर होमोलॉजी इस श्रृंखला परिसर की होमोलॉजी (गणित) है।
ग्रेडियेंट फ्लो लाइन्स समीकरण, ऐसी स्थिति में जहां फ़्लोर के विचारों को सफलतापूर्वक लागू किया जा सकता है, आमतौर पर ज्यामितीय रूप से सार्थक और विश्लेषणात्मक रूप से ट्रैक करने योग्य समीकरण है। सिम्प्लेक्टिक फ़्लोअर होमोलॉजी के लिए, लूपस्पेस में पथ के लिए ग्रेडिएंट फ्लो समीकरण ब्याज के सिंपलेक्टिक मैनिफ़ोल्ड के लिए सिलेंडर (लूप के पथ का कुल स्थान) के मानचित्र के लिए कॉची-रीमैन समीकरण (का विकृत संस्करण) है; समाधानों को स्यूडोहोलोमोर्फिक वक्र के रूप में जाना जाता है। ग्रोमोव की कॉम्पैक्टनेस प्रमेय (टोपोलॉजी) का उपयोग तब यह दिखाने के लिए किया जाता है कि अंतर अच्छी तरह से परिभाषित है और शून्य का वर्ग है, ताकि फ़्लोर होमोलॉजी को परिभाषित किया जा सके। इंस्टेंटन फ़्लोर होमोलॉजी के लिए, ग्रेडिएंट फ़्लो समीकरण वास्तव में वास्तविक रेखा के साथ पार किए गए तीन गुना पर यांग-मिल्स समीकरण है।
सिम्पलेक्टिक फ़्लोर होमोलॉजी
सिंपलेक्टिक फ़्लोर होमोलॉजी (एसएफएच) समरूपता सिद्धांत है जो सिंपलेक्टिक मैनिफोल्ड और इसके गैर-अपक्षयी लक्षणरूपता से जुड़ा है। यदि सिम्पलेक्टोमोर्फिज्म सिम्पलेक्टोमोर्फिज्म है, तो समरूपता सिम्पलेक्टिक मैनिफोल्ड के मुक्त लूप स्थान (सार्वभौमिक आवरण) पर कार्यात्मक सहानुभूतिपूर्ण क्रिया का अध्ययन करने से उत्पन्न होती है। एसएफएच सिम्प्लेक्टोमोर्फिज्म के हैमिल्टनियन आइसोटोपी के तहत अपरिवर्तनीय है।
यहां, नॉनडिजेनरेसी का मतलब है कि 1 इसके किसी भी निश्चित बिंदु पर सिम्प्लेक्टोमोर्फिज्म के व्युत्पन्न का आइगेनवैल्यू नहीं है। इस शर्त का तात्पर्य है कि निश्चित बिंदु अलग-थलग हैं। एसएफएच ऐसे सिम्पलेक्टोमोर्फिज्म के निश्चित बिंदु (गणित) द्वारा उत्पन्न श्रृंखला परिसर की समरूपता है, जहां अंतर वास्तविक रेखा के उत्पाद और सिम्पलेक्टोमोर्फिज्म के मैपिंग टोरस में कुछ स्यूडोहोलोमोर्फिक वक्रों की गणना करता है। यह स्वयं मूल मैनिफोल्ड से दो बड़े आयामों का सिम्प्लेक्टिक मैनिफोल्ड है। लगभग जटिल संरचना के उचित विकल्प के लिए, इसमें छिद्रित होलोमोर्फिक वक्र (परिमित ऊर्जा के) में सिम्प्लेक्टोमोर्फिज्म के निश्चित बिंदुओं के अनुरूप मैपिंग टोरस में लूपों के लिए बेलनाकार सिरे होते हैं। सापेक्ष सूचकांक को निश्चित बिंदुओं के जोड़े के बीच परिभाषित किया जा सकता है, और अंतर सापेक्ष सूचकांक 1 के साथ होलोमोर्फिक सिलेंडरों की संख्या की गणना करता है।
कॉम्पैक्ट मैनिफोल्ड के हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म की सिंपलेक्टिक फ़्लोर होमोलॉजी, अंतर्निहित मैनिफोल्ड के एकवचन होमोलॉजी के लिए आइसोमोर्फिक है। इस प्रकार, उस मैनिफ़ोल्ड की बेट्टी संख्याओं का योग गैर-अपक्षयी लक्षणवाद के लिए निश्चित बिंदुओं की संख्या के लिए अर्नोल्ड अनुमान के संस्करण द्वारा अनुमानित निचली सीमा उत्पन्न करता है। हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म के एसएफएच में पैंट (गणित) उत्पाद की जोड़ी भी है जो क्वांटम कोहोमोलॉजी के बराबर विकृत कप उत्पाद है। गैर-सटीक लक्षणात्मकता के लिए उत्पाद का संस्करण भी मौजूद है।
मैनिफोल्ड एम के कोटैंजेंट बंडल के लिए, फ़्लोर होमोलॉजी इसकी गैर-कॉम्पैक्टनेस के कारण हैमिल्टनियन की पसंद पर निर्भर करती है। हैमिल्टनवासियों के लिए जो अनंत पर द्विघात हैं, फ़्लोर होमोलॉजी एम के मुक्त लूप स्थान की एकवचन होमोलॉजी है (इस कथन के विभिन्न संस्करणों के प्रमाण विटर्बो, सलामोन-वेबर, एबोंडांडोलो-श्वार्ज़ और कोहेन के कारण हैं)। कोटैंजेंट बंडल के फ़्लोर होमोलॉजी पर अधिक जटिल ऑपरेशन हैं जो अंतर्निहित मैनिफोल्ड के लूप स्पेस की होमोलॉजी पर स्ट्रिंग टोपोलॉजी ऑपरेशन के अनुरूप हैं।
फ़्लोर होमोलॉजी का सहानुभूतिपूर्ण संस्करण समरूप दर्पण समरूपता अनुमान के निर्माण में महत्वपूर्ण तरीके से सामने आता है।
पीएसएस समरूपता
1996 में एस. पियुनिखिन, डी. सलामोन और एम. श्वार्ज़ ने फ़्लोर होमोलॉजी और क्वांटम कोहॉमोलॉजी रिंग के बीच संबंध के बारे में परिणामों को संक्षेप में प्रस्तुत किया और निम्नलिखित के रूप में तैयार किया।Piunikhin, Salamon & Schwarz (1996)
- अर्ध-सकारात्मक सिम्पलेक्टिक मैनिफोल्ड (एम,ω) के लूप स्पेस के फ़्लोर कोहोमोलॉजी समूह एम के सामान्य कोहोमोलॉजी के लिए स्वाभाविक रूप से आइसोमोर्फिक हैं, जो डेक परिवर्तन के समूह से जुड़े उपयुक्त नोविकोव रिंग द्वारा तनावग्रस्त हैं।
- यह समरूपता एम के सह-समरूपता पर क्वांटम कप उत्पाद संरचना को फ़्लोर समरूपता पर जोड़ी-पैंट उत्पाद के साथ जोड़ती है।
अर्ध-सकारात्मक की उपरोक्त स्थिति और सिंपलेक्टिक मैनिफोल्ड एम की सघनता हमारे लिए क्वांटम कोहोमोलॉजी#नोविकोव रिंग प्राप्त करने और फ़्लोर होमोलॉजी और क्वांटम कोहोमोलॉजी दोनों की परिभाषा के लिए आवश्यक है। अर्ध-सकारात्मक स्थिति का अर्थ है कि निम्नलिखित में से कोई धारण करता है (ध्यान दें कि तीन मामले असंयुक्त नहीं हैं):
- π में प्रत्येक A के लिए2(एम) जहां λ≥0 (एम मोनोटोन है)।
- प्रत्येक ए के लिए π2(एम)।
- न्यूनतम चेर्न संख्या N ≥ 0 द्वारा परिभाषित n − 2 से बड़ा या उसके बराबर है।
सिम्प्लेक्टिक मैनिफोल्ड एम के क्वांटम कोहोमोलॉजी समूह को नोविकोव रिंग Λ के साथ सामान्य कोहोमोलॉजी के टेंसर उत्पादों के रूप में परिभाषित किया जा सकता है, यानी।
फ़्लोर होमोलॉजी का यह निर्माण एम पर लगभग जटिल संरचना की पसंद पर स्वतंत्रता और मोर्स सिद्धांत और स्यूडोहोलोमोर्फिक वक्रों के विचारों से प्रदान की गई फ़्लोर होमोलॉजी के समरूपता की व्याख्या करता है, जहां हमें पृष्ठभूमि के रूप में होमोलॉजी और कोहोलॉजी के बीच पोंकारे द्वंद्व को पहचानना चाहिए।
तीन manifolds की फ़्लोर होमोलॉजी
कई गुना बंद थ्री-मैनिफ़ोल्ड्स से संबंधित कई समतुल्य फ़्लोअर समरूपताएँ हैं। प्रत्येक से तीन प्रकार के समरूपता समूह उत्पन्न होते हैं, जो सटीक त्रिभुज में फिट होते हैं। थ्री-मैनिफोल्ड में गाँठ प्रत्येक सिद्धांत के श्रृंखला परिसर पर निस्पंदन प्रेरित करती है, जिसकी श्रृंखला होमोटॉपी प्रकार गाँठ अपरिवर्तनीय है। (उनकी समरूपताएं संयुक्त रूप से परिभाषित खोवानोव समरूपता के समान औपचारिक गुणों को संतुष्ट करती हैं।)
ये समरूपताएं 4-मैनिफोल्ड्स के डोनाल्डसन और सीबर्ग इनवेरिएंट के साथ-साथ सिम्प्लेक्टिक 4-मैनिफोल्ड्स के टाउब्स के ग्रोमोव इनवेरिएंट से निकटता से संबंधित हैं; इन सिद्धांतों के अनुरूप तीन गुना समरूपताओं के अंतरों का अध्ययन प्रासंगिक अंतर समीकरणों (यांग-मिल्स सिद्धांत|यांग-मिल्स, सेइबर्ग-विटन गेज सिद्धांत|सेइबर्ग-विटन, और कॉची-रीमैन समीकरण|कॉची-) के समाधान पर विचार करके किया जाता है। रीमैन, क्रमशः) 3-मैनिफोल्ड क्रॉस आर पर। 3-मैनिफोल्ड फ़्लोर होमोलॉजीज़ को सीमा के साथ चार-मैनिफ़ोल्ड के लिए सापेक्ष इनवेरिएंट का लक्ष्य भी होना चाहिए, जो साथ ग्लूइंग द्वारा प्राप्त बंद 4-मैनिफोल्ड के इनवेरिएंट को ग्लूइंग निर्माण से संबंधित है। उनकी सीमाओं के साथ 3 गुना घिरा हुआ। (टोपोलॉजिकल क्वांटम क्षेत्र सिद्धांत सिद्धांत की धारणा से निकटता से संबंधित है।) हीगार्ड फ़्लोर होमोलॉजी के लिए, 3-मैनिफ़ोल्ड होमोलॉजी को पहले परिभाषित किया गया था, और बंद 4-मैनिफ़ोल्ड के लिए अपरिवर्तनीय को बाद में इसके संदर्भ में परिभाषित किया गया था।
सीमा के साथ 3-मैनिफोल्ड होमोलॉजी का 3-मैनिफोल्ड तक विस्तार भी है: सिले हुए फ़्लोर होमोलॉजी (Juhász 2008) और सीमाबद्ध फ़्लोर समरूपता (Lipshitz, Ozsváth & Thurston 2008). ये सीमा के साथ दो 3-मैनिफोल्ड की सीमा के साथ संघ के रूप में वर्णित 3-मैनिफोल्ड के फ़्लोर होमोलॉजी के लिए ग्लूइंग फ़ार्मुलों द्वारा बंद 3-मैनिफ़ोल्ड के लिए अपरिवर्तनीय से संबंधित हैं।
यदि तीन गुना संपर्क संरचना से सुसज्जित है, तो थ्री-मैनिफोल्ड फ़्लोर होमोलॉजीज़ भी होमोलॉजी के विशिष्ट तत्व से सुसज्जित हैं। क्रोनहाइमर और म्रोका ने सबसे पहले सेइबर्ग-विटन मामले में संपर्क तत्व पेश किया। ओज़स्वाथ और स्जाबो ने कॉन्टैक्ट मैनिफोल्ड्स और ओपन बुक डीकंपोजिशन के बीच गिरौक्स के संबंध का उपयोग करके हीगार्ड फ़्लोर होमोलॉजी के लिए इसका निर्माण किया, और यह एम्बेडेड कॉन्टैक्ट होमोलॉजी में खाली सेट के होमोलॉजी वर्ग के रूप में मुफ्त में आता है। (जिसे, अन्य तीन के विपरीत, इसकी परिभाषा के लिए संपर्क होमोलॉजी की आवश्यकता होती है। एम्बेडेड संपर्क होमोलॉजी के लिए देखें Hutchings (2009).
ये सभी सिद्धांत प्राथमिक सापेक्ष ग्रेडिंग से सुसज्जित हैं; इन्हें क्रोनहाइमर और म्रोका (एसडब्ल्यूएफ के लिए), ग्रिप और हुआंग (एचएफ के लिए), और हचिंग्स (ईसीएच के लिए) द्वारा पूर्ण ग्रेडिंग (ओरिएंटेड 2-प्लेन फ़ील्ड के होमोटोपी वर्गों द्वारा) तक उठा लिया गया है। क्रिस्टोफ़ारो-गार्डिनर ने दिखाया है कि ईसीएच और सीबर्ग-विटन फ़्लोर कोहोलॉजी के बीच ताउब्स की समरूपता इन पूर्ण ग्रेडिंग को संरक्षित करती है।
इंस्टेंटन फ़्लोर होमोलॉजी
यह फ़्लोअर द्वारा स्वयं प्रस्तुत डोनाल्डसन सिद्धांत से जुड़ा तीन गुना अपरिवर्तनीय है। यह चेर्न-साइमन्स सिद्धांत का उपयोग करके प्राप्त किया जाता है | चेर्न-साइमन्स प्रमुख बंडल एसयू(2)-बंडल पर कनेक्शन (गणित) के स्थान पर तीन-मैनिफोल्ड (अधिक सटीक रूप से, होमोलॉजी 3-गोले) पर कार्य करता है। इसके महत्वपूर्ण बिंदु फ्लैट कनेक्शन हैं और इसकी प्रवाह रेखाएं इंस्टेंटन हैं, यानी वास्तविक रेखा के साथ पार किए गए तीन गुना पर एंटी-सेल्फ-डुअल कनेक्शन। इंस्टेंटन फ़्लोर होमोलॉजी को कैसन अपरिवर्तनीय के सामान्यीकरण के रूप में देखा जा सकता है क्योंकि फ़्लोर होमोलॉजी की यूलर विशेषता कैसन इनवेरिएंट से सहमत है।
फ़्लोर द्वारा फ़्लोर होमोलॉजी की शुरुआत के तुरंत बाद, डोनाल्डसन को एहसास हुआ कि कोबॉर्डिज़्म मानचित्रों को प्रेरित करते हैं। यह संरचना का पहला उदाहरण था जिसे टोपोलॉजिकल क्वांटम फ़ील्ड सिद्धांत के रूप में जाना जाता है।
सेइबर्ग-विटन फ़्लोर होमोलॉजी
सेबर्ग-विटन फ़्लोर होमोलॉजी या मोनोपोल फ़्लोर होमोलॉजी चिकनी 3-कई गुना (स्पिन-सी संरचना से सुसज्जित) का होमोलॉजी सिद्धांत है।सीसंरचना). इसे थ्री-मैनिफोल्ड पर यू(1) कनेक्शन पर चेर्न-साइमन्स-डिराक फ़ंक्शनल की मोर्स होमोलॉजी के रूप में देखा जा सकता है। संबंधित ढाल प्रवाह समीकरण वास्तविक रेखा के साथ पार किए गए 3-मैनिफोल्ड पर सेबर्ग-विटन समीकरण से मेल खाता है। समान रूप से, श्रृंखला परिसर के जनरेटर 3-मैनिफोल्ड और वास्तविक रेखा के उत्पाद पर सेइबर्ग-विटन समीकरणों (मोनोपोल के रूप में जाना जाता है) के अनुवाद-अपरिवर्तनीय समाधान हैं, और अंतर उत्पाद पर सेइबर्ग-विटन समीकरणों के समाधान की गणना करता है तीन गुना और वास्तविक रेखा की, जो अनंत और नकारात्मक अनंत पर अपरिवर्तनीय समाधानों के लिए स्पर्शोन्मुख हैं।
सीबर्ग-विटन-फ़्लोर होमोलॉजी का संस्करण पीटर क्रोनहाइमर और टॉमाज़ म्रोवका द्वारा मोनोग्राफ मोनोपोल और थ्री-मैनिफोल्ड्स में कठोरता से बनाया गया था, जहां इसे मोनोपोल फ़्लोर होमोलॉजी के रूप में जाना जाता है। टौब्स ने दिखाया है कि एम्बेडेड संपर्क समरूपता के लिए यह समरूपी है। तर्कसंगत समरूपता 3-क्षेत्रों के लिए एसडब्ल्यूएफ के वैकल्पिक निर्माण दिए गए हैं Manolescu (2003) और Frøyshov (2010); वे सहमत होने के लिए जाने जाते हैं।
हीगार्ड फ़्लोर होमोलॉजी
हीगार्ड फ़्लोर होमोलॉजी पीटर ओज़स्वथ और ज़ोल्टन स्ज़ाबो (गणितज्ञ) के कारण अपरिवर्तनीय है | स्पिन से सुसज्जित बंद 3-मैनिफोल्ड का ज़ोल्टन स्ज़ाबोसीसंरचना. इसकी गणना लैग्रेंजियन फ़्लोर होमोलॉजी के अनुरूप निर्माण के माध्यम से अंतरिक्ष के हेगार्ड विभाजन का उपयोग करके की जाती है। Kutluhan, Lee & Taubes (2020) ने प्रमाण की घोषणा की कि हीगार्ड फ़्लोर होमोलॉजी सीबर्ग-विटन फ़्लोर होमोलॉजी के समरूपी है, और Colin, Ghiggini & Honda (2011) ने प्रमाण की घोषणा की कि हीगार्ड फ़्लोर होमोलॉजी का प्लस-संस्करण (रिवर्स ओरिएंटेशन के साथ) एम्बेडेड संपर्क होमोलॉजी के लिए आइसोमोर्फिक है।
थ्री-मैनिफोल्ड में गाँठ हीगार्ड फ़्लोर होमोलॉजी समूहों पर निस्पंदन को प्रेरित करती है, और फ़िल्टर किए गए होमोटॉपी प्रकार शक्तिशाली गाँठ अपरिवर्तनीय है, जिसे नॉट फ़्लोर होमोलॉजी कहा जाता है। यह अलेक्जेंडर बहुपद का वर्गीकरण करता है। नॉट फ़्लोर होमोलॉजी को परिभाषित किया गया था Ozsváth & Szabó (2004) और स्वतंत्र रूप से Rasmussen (2003). यह गाँठ वंश का पता लगाने के लिए जाना जाता है। हीगार्ड स्प्लिटिंग के लिए ग्रिड आरेखों का उपयोग करते हुए, नॉट फ़्लोर होमोलॉजी को संयोजनात्मक निर्माण दिया गया था Manolescu, Ozsváth & Sarkar (2009).
गाँठ पर शाखाबद्ध S^3 के डबल कवर (टोपोलॉजी) की हीगार्ड फ़्लोर होमोलॉजी वर्णक्रमीय अनुक्रम द्वारा खोवानोव होमोलॉजी से संबंधित है (Ozsváth & Szabó 2005).
हीगार्ड फ़्लोर होमोलॉजी के टोपी संस्करण का संयुक्त रूप से वर्णन किया गया था Sarkar & Wang (2010). हीगार्ड फ़्लोर होमोलॉजी के प्लस और माइनस संस्करण, और संबंधित ओज़स्वथ-स्ज़ाबो चार-मैनिफोल्ड इनवेरिएंट को संयुक्त रूप से भी वर्णित किया जा सकता है (Manolescu, Ozsváth & Thurston 2009).
एंबेडेड संपर्क समरूपता
माइकल हचिंग्स (गणितज्ञ) के कारण एंबेडेड संपर्क होमोलॉजी, 3-मैनिफोल्ड्स का अपरिवर्तनीय है (स्पिन की पसंद के अनुरूप विशिष्ट दूसरे होमोलॉजी वर्ग के साथ)सीबर्ग-विटन फ़्लोअर समरूपता में सी संरचना) आइसोमोर्फिक (क्लिफोर्ड टौब्स के काम द्वारा) सेबर्ग-विटन फ़्लोअर कोहोमोलॉजी और परिणामस्वरूप (द्वारा घोषित कार्य द्वारा) Kutluhan, Lee & Taubes 2020 और Colin, Ghiggini & Honda 2011) हीगार्ड फ़्लोर होमोलॉजी के प्लस-संस्करण के लिए (रिवर्स ओरिएंटेशन के साथ)। इसे ताउब्स के ग्रोमोव इनवेरिएंट के विस्तार के रूप में देखा जा सकता है, जिसे सीबर्ग-विटन इनवेरिएंट के समतुल्य माना जाता है, बंद सिम्पलेक्टिक 4-मैनिफोल्ड्स से लेकर कुछ गैर-कॉम्पैक्ट सिम्पलेक्टिक 4-मैनिफोल्ड्स (अर्थात्, संपर्क तीन-मैनिफोल्ड क्रॉस आर)। इसका निर्माण सहानुभूति क्षेत्र सिद्धांत के अनुरूप है, जिसमें यह बंद रीब कक्षाओं के कुछ संग्रहों द्वारा उत्पन्न होता है और इसका अंतर रीब कक्षाओं के कुछ संग्रहों पर समाप्त होने वाले कुछ होलोमोर्फिक वक्रों की गणना करता है। यह रीब कक्षाओं के संग्रह पर तकनीकी स्थितियों में एसएफटी से भिन्न है जो इसे उत्पन्न करता है - और दिए गए सिरों के साथ फ्रेडहोम सूचकांक 1 के साथ सभी होलोमोर्फिक वक्रों की गिनती में नहीं, बल्कि केवल वे जो ईसीएच इंडेक्स द्वारा दी गई टोपोलॉजिकल स्थिति को संतुष्ट करते हैं, जो विशेष रूप से तात्पर्य यह है कि विचार किए गए वक्र (मुख्य रूप से) अंतर्निहित हैं।
वेनस्टीन का अनुमान है कि संपर्क 4-कई गुना में किसी भी संपर्क फॉर्म के लिए बंद रीब कक्षा होती है जो किसी भी मैनिफोल्ड पर होती है जिसका ईसीएच गैर-तुच्छ है, और ईसीएच से निकटता से संबंधित तकनीकों का उपयोग करके टाउब्स द्वारा साबित किया गया था; इस कार्य के विस्तार से ECH और SWF के बीच समरूपता उत्पन्न हुई। ईसीएच में कई निर्माण (इसकी अच्छी तरह से परिभाषितता सहित) इस समरूपता पर निर्भर करते हैं (Taubes 2007).
ईसीएच के संपर्क तत्व का विशेष रूप से अच्छा रूप है: यह रीब कक्षाओं के खाली संग्रह से जुड़ा चक्र है।
एम्बेडेड संपर्क होमोलॉजी के एनालॉग को किसी सतह (संभवतः सीमा के साथ) के सिम्पलेक्टोमोर्फिज्म के टोरी के मानचित्रण के लिए परिभाषित किया जा सकता है और इसे आवधिक फ़्लोर होमोलॉजी के रूप में जाना जाता है, जो सतह सिम्पलेक्टोमोर्फिज़्म के सिम्पलेक्टिक फ़्लोर होमोलॉजी को सामान्यीकृत करता है। अधिक सामान्यतः, इसे 3-मैनिफोल्ड पर किसी भी स्थिर हैमिल्टनियन संरचना के संबंध में परिभाषित किया जा सकता है; संपर्क संरचनाओं की तरह, स्थिर हैमिल्टनियन संरचनाएं गैर-लुप्त वेक्टर क्षेत्र (रीब वेक्टर क्षेत्र) को परिभाषित करती हैं, और हचिंग्स और टौब्स ने उनके लिए वेनस्टीन अनुमान का एनालॉग साबित किया है, अर्थात् उनके पास हमेशा बंद कक्षाएं होती हैं (जब तक कि वे 2 की टोरी की मैपिंग नहीं कर रहे हों) -टोरस).
लैग्रेंजियन इंटरसेक्शन फ़्लोर होमोलॉजी
सिंपलेक्टिक मैनिफोल्ड के दो ट्रांसवर्सली इंटरसेक्टिंग लैग्रैन्जियन सबमैनिफोल्ड्स की लैग्रैन्जियन फ्लोर होमोलॉजी, दो सबमैनिफोल्ड्स के प्रतिच्छेदन बिंदुओं द्वारा उत्पन्न चेन कॉम्प्लेक्स की होमोलॉजी है और जिसका अंतर स्यूडोहोलोमोर्फिक व्हिटनी डिस्क को गिनता है।
तीन लैग्रेंजियन सबमैनिफोल्ड्स एल दिए गए हैं0, एल1, और मैं2 सिंपलेक्टिक मैनिफोल्ड में, लैग्रेंजियन फ़्लोर होमोलॉजी पर उत्पाद संरचना है:
जिसे होलोमोर्फिक त्रिकोणों की गिनती करके परिभाषित किया गया है (अर्थात, त्रिकोण के होलोमोर्फिक मानचित्र जिनके शीर्ष और किनारे उपयुक्त चौराहे बिंदुओं और लैग्रेंजियन सबमैनिफोल्ड्स पर मैप होते हैं)।
इस विषय पर पेपर फुकाया, ओह, ओनो और ओह्टा के कारण हैं; लालोंडे और कॉर्निया के क्लस्टर समरूपता पर हालिया काम इसके लिए अलग दृष्टिकोण पेश करता है। लैग्रेन्जियन सबमेनिफोल्ड्स की जोड़ी की फ़्लोर होमोलॉजी हमेशा मौजूद नहीं हो सकती है; जब ऐसा होता है, तो यह हैमिल्टनियन आइसोटोपी का उपयोग करके लैग्रेंजियन को दूसरे से दूर आइसोटोप करने में बाधा उत्पन्न करता है।
फ़्लोर होमोलॉजी के कई प्रकार लैग्रेंजियन फ़्लोर होमोलॉजी के विशेष मामले हैं। एम के सिम्प्लेक्टोमोर्फिज्म के सिंपलेक्टिक फ्लोर होमोलॉजी को लैग्रेंजियन फ्लोर होमोलॉजी के मामले के रूप में माना जा सकता है जिसमें परिवेश मैनिफोल्ड एम को एम के साथ पार किया जाता है और लैग्रेंजियन सबमेनिफोल्ड्स विकर्ण और सिम्प्लेक्टोमोर्फिज्म का ग्राफ होते हैं। हीगार्ड फ़्लोर होमोलॉजी का निर्माण तीन-मैनिफ़ोल्ड के हीगार्ड विभाजन का उपयोग करके परिभाषित पूरी तरह से वास्तविक सबमैनिफ़ोल्ड के लिए लैग्रेंजियन फ़्लोर होमोलॉजी के प्रकार पर आधारित है। सीडेल-स्मिथ और मैनोलेस्कु ने लैग्रेन्जियन फ़्लोर होमोलॉजी के निश्चित मामले के रूप में लिंक इनवेरिएंट का निर्माण किया, जो अनुमानित रूप से खोवानोव होमोलॉजी से सहमत है, जो संयोजन-परिभाषित लिंक इनवेरिएंट है।
अतियाह-फ्लोअर अनुमान
अतियाह-फ़्लोर अनुमान इंस्टेंटन फ़्लोर होमोलॉजी को लैग्रेंजियन इंटरसेक्शन फ़्लोर होमोलॉजी से जोड़ता है।[1] सतह (टोपोलॉजी) के साथ विभाजित हीगार्ड के साथ 3-मैनिफोल्ड Y पर विचार करें . फिर फ्लैट कनेक्शन का स्थान चालू करें मॉड्यूलो गेज तुल्यता सिम्प्लेक्टिक मैनिफोल्ड है आयाम 6जी-6 का, जहां जी सतह का जीनस (गणित) है . हीगार्ड बंटवारे में, दो अलग-अलग 3-मैनिफ़ोल्ड को सीमित करता है; सीमा एम्बेड के साथ प्रत्येक 3-मैनिफोल्ड पर फ्लैट कनेक्शन मॉड्यूलो गेज तुल्यता का स्थान लैग्रेंजियन सबमैनिफोल्ड के रूप में। कोई लैग्रेंजियन इंटरसेक्शन फ़्लोर होमोलॉजी पर विचार कर सकता है। वैकल्पिक रूप से, हम 3-मैनिफोल्ड Y के इंस्टेंटन फ़्लोर होमोलॉजी पर विचार कर सकते हैं। अतियाह-फ़्लोर अनुमान का दावा है कि ये दो अपरिवर्तनीय आइसोमोर्फिक हैं। सलामन-वेहरहेम और डेमी-फुकाया इस अनुमान को साबित करने के लिए अपने कार्यक्रमों पर काम कर रहे हैं।
दर्पण समरूपता से संबंध
मैक्सिम कोनत्सेविच का होमोलॉजिकल मिरर समरूपता अनुमान, कैलाबी-यॉ मैनिफोल्ड में लैग्रैंगियंस के लैग्रैन्जियन फ़्लोर होमोलॉजी के बीच समानता की भविष्यवाणी करता है। और दर्पण कैलाबी-यॉ मैनिफोल्ड पर सुसंगत ढेरों के विस्तारित समूह। इस स्थिति में, किसी को फ़्लोर होमोलॉजी समूहों पर नहीं बल्कि फ़्लोर श्रृंखला समूहों पर ध्यान केंद्रित करना चाहिए। पैंट-पैंट उत्पाद के समान, कोई छद्म-होलोमोर्फिक एन-गॉन का उपयोग करके बहु-रचनाओं का निर्माण कर सकता है। ये रचनाएँ संतुष्ट करती हैं -संबंध सभी (अबाधित) लैग्रेंजियन सबमेनिफोल्ड्स की श्रेणी को सिम्प्लेक्टिक मैनिफोल्ड में बनाते हैं -श्रेणी, जिसे फुकाया श्रेणी कहा जाता है।
अधिक सटीक होने के लिए, किसी को लैग्रेंजियन में अतिरिक्त डेटा जोड़ना होगा - ग्रेडिंग और स्पिन संरचना। अंतर्निहित भौतिकी के सम्मान में इन संरचनाओं के विकल्प वाले लैग्रेंजियन को अक्सर मेम्ब्रेन (एम-सिद्धांत) कहा जाता है। होमोलॉजिकल मिरर समरूपता अनुमान में कहा गया है कि कैलाबी-यौ की फुकाया श्रेणी के बीच प्रकार की व्युत्पन्न मोरिता तुल्यता है और दर्पण के सुसंगत ढेरों की सीमाबद्ध व्युत्पन्न श्रेणी के अंतर्गत डीजी श्रेणी, और इसके विपरीत।
सिम्पलेक्टिक फील्ड सिद्धांत (एसएफटी)
यह उनके बीच संपर्क विविधताओं और सहानुभूतिपूर्ण सह-बॉर्डिज्म का अपरिवर्तनीय रूप है, जो मूल रूप से याकोव एलियाशबर्ग, अलेक्जेंडर गिवेनटल और हेल्मुट हॉफ़र के कारण है। सहानुभूति क्षेत्र सिद्धांत के साथ-साथ इसके उप-संकुल, तर्कसंगत सहानुभूति क्षेत्र सिद्धांत और संपर्क समरूपता को विभेदक बीजगणित की समरूपता के रूप में परिभाषित किया गया है, जो चुने हुए संपर्क प्रपत्र के रीब वेक्टर क्षेत्र की बंद कक्षाओं द्वारा उत्पन्न होते हैं। अंतर संपर्क मैनिफोल्ड पर सिलेंडर में कुछ होलोमोर्फिक वक्रों की गणना करता है, जहां तुच्छ उदाहरण बंद रीब कक्षाओं पर (तुच्छ) सिलेंडरों के शाखित आवरण हैं। इसमें आगे रैखिक समरूपता सिद्धांत शामिल है, जिसे बेलनाकार या रैखिककृत संपर्क समरूपता कहा जाता है (कभी-कभी, संकेतन के दुरुपयोग से, केवल संपर्क समरूपता से), जिनके श्रृंखला समूह बंद कक्षाओं द्वारा उत्पन्न वेक्टर स्थान होते हैं और जिनके अंतर केवल होलोमोर्फिक सिलेंडरों की गिनती करते हैं। हालाँकि, होलोमोर्फिक डिस्क की उपस्थिति और नियमितता और ट्रांसवर्सलिटी परिणामों की कमी के कारण बेलनाकार संपर्क होमोलॉजी को हमेशा परिभाषित नहीं किया जाता है। ऐसी स्थितियों में जहां बेलनाकार संपर्क समरूपता समझ में आती है, इसे मुक्त लूप स्थान पर क्रिया कार्यात्मक की (थोड़ा संशोधित) मोर्स समरूपता के रूप में देखा जा सकता है, जो लूप पर संपर्क प्रपत्र अल्फा के अभिन्न अंग के लिए लूप भेजता है। रीब कक्षाएँ इस कार्यात्मकता के महत्वपूर्ण बिंदु हैं।
एसएफटी कई गुना संपर्क करें के लेजेंडरी सबमैनिफोल्ड के सापेक्ष अपरिवर्तनीय को भी जोड़ता है जिसे सापेक्ष संपर्क होमोलॉजी के रूप में जाना जाता है। इसके जनरेटर रीब कॉर्ड हैं, जो रीब वेक्टर क्षेत्र के प्रक्षेपवक्र हैं जो लैग्रेन्जियन पर शुरू और समाप्त होते हैं, और इसका अंतर संपर्क मैनिफोल्ड के सरलीकरण में कुछ होलोमोर्फिक स्ट्रिप्स की गणना करता है जिनके सिरे दिए गए रीब कॉर्ड के लिए स्पर्शोन्मुख हैं।
एसएफटी में संपर्क मैनिफोल्ड्स को सिंपलेक्टोमोर्फिज्म के साथ सिंपलेक्टिक मैनिफोल्ड्स के टोरस को मैप करके प्रतिस्थापित किया जा सकता है। जबकि बेलनाकार संपर्क समरूपता को अच्छी तरह से परिभाषित किया गया है और सिम्पलेक्टोमोर्फिज्म की शक्तियों के सहानुभूतिपूर्ण फ़्लोर समरूपता द्वारा दिया गया है, (तर्कसंगत) सहानुभूति क्षेत्र सिद्धांत और संपर्क समरूपता को सामान्यीकृत सहानुभूति फ़्लोर समरूपता के रूप में माना जा सकता है। महत्वपूर्ण मामले में जब लक्षणवाद समय-निर्भर हैमिल्टनियन का समय-मानचित्र है, हालांकि यह दिखाया गया था कि इन उच्च अपरिवर्तनीयों में कोई और जानकारी नहीं है।
फ़्लोर होमोटॉपी
किसी वस्तु के फ़्लोर होमोलॉजी सिद्धांत का निर्माण करने का कल्पनीय तरीका संबंधित स्पेक्ट्रम (होमोटॉपी सिद्धांत) का निर्माण करना होगा, जिसकी सामान्य होमोलॉजी वांछित फ़्लोर होमोलॉजी है। ऐसे स्पेक्ट्रम (समरूप सिद्धांत) होमोलॉजी सिद्धांतों को लागू करने से अन्य दिलचस्प अपरिवर्तनीयताएं प्राप्त हो सकती हैं। यह रणनीति राल्फ कोहेन, जॉन जोन्स और ग्रीम सहगल द्वारा प्रस्तावित की गई थी, और सेबर्ग-विटन-फ्लोर होमोलॉजी के लिए कुछ मामलों में इसे लागू किया गया था। Manolescu (2003) और कोहेन द्वारा कोटैंजेंट बंडलों की सिम्प्लेक्टिक फ़्लोर होमोलॉजी के लिए। यह दृष्टिकोण मनोलेस्कु के 2013 के पिन (2)-इक्विवेरिएंट सेबर्ग-विटन फ़्लोर होमोलॉजी के निर्माण का आधार था, जिसके साथ उन्होंने आयाम 5 और उच्चतर के कई गुना के लिए त्रिकोणीय अनुमान को अस्वीकार कर दिया था।
विश्लेषणात्मक बुनियाद
इनमें से कई फ़्लोअर समरूपताओं का पूरी तरह और कठोरता से निर्माण नहीं किया गया है, और कई अनुमानित तुल्यताएँ सिद्ध नहीं की गई हैं। इसमें शामिल विश्लेषण में तकनीकी कठिनाइयाँ आती हैं, विशेष रूप से स्यूडोहोलोमोर्फिक वक्रों के कॉम्पेक्टिफिकेशन (गणित) मॉड्यूलि रिक्त स्थान के निर्माण में। होफ़र ने, क्रिस वायसोकी और एडुआर्ड ज़ेन्डर के सहयोग से, बहुरूपी ्स के अपने सिद्धांत और सामान्य फ्रेडहोम सिद्धांत के माध्यम से नई विश्लेषणात्मक नींव विकसित की है। हालाँकि पॉलीफोल्ड परियोजना अभी तक पूरी तरह से पूरी नहीं हुई है, कुछ महत्वपूर्ण मामलों में सरल तरीकों का उपयोग करके ट्रांसवर्सेलिटी दिखाई गई है।
गणना
फ़्लोर होमोलॉजीज़ की स्पष्ट रूप से गणना करना आम तौर पर कठिन होता है। उदाहरण के लिए, सभी सतही लक्षणों के लिए सिंपलेक्टिक फ़्लोर होमोलॉजी 2007 में ही पूरी हो गई थी। हीगार्ड फ़्लोर होमोलॉजी इस संबंध में सफल कहानी रही है: शोधकर्ताओं ने 3-मैनिफोल्ड के विभिन्न वर्गों के लिए इसकी गणना करने के लिए इसकी बीजगणितीय संरचना का उपयोग किया है और संयोजनात्मक पाया है गणना के लिए एल्गोरिदम अधिकांश सिद्धांत का. यह मौजूदा आक्रमणकारियों और संरचनाओं से भी जुड़ा हुआ है और 3-मैनिफोल्ड टोपोलॉजी में कई अंतर्दृष्टि प्राप्त हुई हैं।
संदर्भ
फ़ुटनोट्स
किताबें और सर्वेक्षण
- Atiyah, Michael (1988). "New invariants of 3- and 4-dimensional manifolds". हरमन वेइल की गणितीय विरासत. Proceedings of Symposia in Pure Mathematics. Vol. 48. pp. 285–299. doi:10.1090/pspum/048/974342. ISBN 9780821814826.
- Augustin Banyaga; David Hurtubise (2004). मोर्स होमोलॉजी पर व्याख्यान. Kluwer Academic Publishers. ISBN 978-1-4020-2695-9.
- Simon Donaldson; M. Furuta; D. Kotschick (2002). यांग-मिल्स सिद्धांत में फ़्लोर होमोलॉजी समूह. Cambridge Tracts in Mathematics. Vol. 147. Cambridge University Press. ISBN 978-0-521-80803-3.
- Ellwood, David A.; Ozsváth, Peter S.; Stipsicz, András I.; Szabó, Zoltán, eds. (2006). फ़्लोर होमोलॉजी, गेज सिद्धांत, और निम्न-आयामी टोपोलॉजी. Clay Mathematics Proceedings. Vol. 5. Clay Mathematics Institute. ISBN 978-0-8218-3845-7.
- Kronheimer, Peter; Mrowka, Tomasz (2007). मोनोपोल और थ्री-मैनिफोल्ड्स. Cambridge University Press. ISBN 978-0-521-88022-0.
- McDuff, Dusa; Salamon, Dietmar (1998). सिंपलेक्टिक टोपोलॉजी का परिचय. Oxford University Press. ISBN 978-0-19-850451-1.
- McDuff, Dusa (2005). "फ़्लोर सिद्धांत और निम्न आयामी टोपोलॉजी". Bulletin of the American Mathematical Society. 43: 25–42. doi:10.1090/S0273-0979-05-01080-3. MR 2188174.
- Schwarz, Matthias (2012) [1993]. मोर्स होमोलॉजी. Progress in Mathematics. Vol. 111. Birkhäuser. ISBN 978-3-0348-8577-5.
- Seidel, Paul (2008). फुकाया श्रेणियाँ और पिकार्ड लेफ्शेट्ज़ सिद्धांत. European Mathematical Society. ISBN 978-3037190630.
शोध लेख
- Colin, Vincent; Ghiggini, Paolo; Honda, Ko (2011). "ओपन बुक डीकंपोजिशन के माध्यम से हीगार्ड फ़्लोर होमोलॉजी और एम्बेडेड संपर्क होमोलॉजी की समानता". PNAS. 108 (20): 8100–8105. Bibcode:2011PNAS..108.8100C. doi:10.1073/pnas.1018734108. PMC 3100941. PMID 21525415.
- Floer, Andreas (1988). "सहानुभूति क्रिया का अनियमित ढाल प्रवाह". Comm. Pure Appl. Math. 41 (6): 775–813. doi:10.1002/cpa.3160410603.
- ——— (1988). "3-मैनिफोल्ड के लिए एक इंस्टेंटन-इनवेरिएंट". Comm. Math. Phys. 118 (2): 215–240. Bibcode:1988CMaPh.118..215F. doi:10.1007/BF01218578. S2CID 122096068. प्रोजेक्ट यूक्लिड
- ——— (1988). "लैग्रेंजियन चौराहों के लिए मोर्स सिद्धांत". J. Differential Geom. 28 (3): 513–547. doi:10.4310/jdg/1214442477. MR 0965228.
- ——— (1989). "लैग्रेंजियन चौराहों पर कप लंबाई का अनुमान". Comm. Pure Appl. Math. 42 (4): 335–356. doi:10.1002/cpa.3160420402.
- ——— (1989). "सहानुभूतिपूर्ण निश्चित बिंदु और होलोमोर्फिक गोले". Comm. Math. Phys. 120 (4): 575–611. Bibcode:1988CMaPh.120..575F. doi:10.1007/BF01260388. S2CID 123345003.
- ——— (1989). "विटन का जटिल और अनंत आयामी मोर्स सिद्धांत" (PDF). J. Diff. Geom. 30 (1): 202–221. doi:10.4310/jdg/1214443291.
- Frøyshov, Kim A. (2010). "तर्कसंगत समरूपता 3-क्षेत्रों के लिए मोनोपोल फ़्लोर समरूपता". Duke Math. J. 155 (3): 519–576. arXiv:0809.4842. doi:10.1215/00127094-2010-060. S2CID 8073050.
- Gromov, Mikhail (1985). "सिम्प्लेक्टिक मैनिफोल्ड्स में छद्म होलोमोर्फिक वक्र". Inventiones Mathematicae. 82 (2): 307–347. Bibcode:1985InMat..82..307G. doi:10.1007/BF01388806. S2CID 4983969.
- Hofer, Helmut; Wysocki, Kris; Zehnder, Eduard (2007). "एक सामान्य फ्रेडहोम सिद्धांत I: एक स्प्लिसिंग-आधारित विभेदक ज्यामिति". Journal of the European Mathematical Society. 9 (4): 841–876. arXiv:math.FA/0612604. Bibcode:2006math.....12604H. doi:10.4171/JEMS/99. S2CID 14716262.
- Juhász, András (2008). "फ़्लोर होमोलॉजी और सतह विघटन". Geometry & Topology. 12 (1): 299–350. arXiv:math/0609779. doi:10.2140/gt.2008.12.299. S2CID 56418423.
- Kutluhan, Cagatay; Lee, Yi-Jen; Taubes, Clifford Henry (2020). "एचएफ=एचएम I: हीगार्ड फ़्लोर होमोलॉजी और सीबर्ग-विटन फ़्लोर होमोलॉजी". Geometry & Topology. 24 (6): 2829–2854. arXiv:1007.1979. doi:10.2140/gt.2020.24.2829. S2CID 118772589.
- Lipshitz, Robert; Ozsváth, Peter; Thurston, Dylan (2008). "बॉर्डरेड हीगार्ड फ़्लोर होमोलॉजी: इनवेरिएंस और पेयरिंग". Memoirs of the American Mathematical Society. 254 (1216). arXiv:0810.0687. doi:10.1090/memo/1216. S2CID 115166724.
- Manolescu, Ciprian (2003). "सेइबर्ग-विटन-फ़्लोर स्थिर होमोटॉपी प्रकार बी1 = 0 के साथ तीन गुना". Geom. Topol. 7 (2): 889–932. arXiv:math/0104024. doi:10.2140/gt.2003.7.889. S2CID 9130339.
- Manolescu, Ciprian; Ozsváth, Peter S.; Sarkar, Sucharit (2009). "नॉट फ़्लोर होमोलॉजी का एक संयोजनात्मक विवरण". Ann. of Math. 169 (2): 633–660. arXiv:math/0607691. Bibcode:2006math......7691M. doi:10.4007/annals.2009.169.633. S2CID 15427272.
- Manolescu, Ciprian; Ozsváth, Peter; Thurston, Dylan (2009). "ग्रिड आरेख और हीगार्ड फ़्लोर अपरिवर्तनीय". arXiv:0910.0078 [math.GT].
- Ozsváth, Peter; Szabo, Zoltán (2004). "होलोमोर्फिक डिस्क और क्लोज्ड थ्री-मैनिफोल्ड्स के लिए टोपोलॉजिकल इनवेरिएंट". Ann. of Math. 159 (3): 1027–1158. arXiv:math/0101206. Bibcode:2001math......1206O. doi:10.4007/annals.2004.159.1027. S2CID 119143219.
- ———; Szabo (2004). "होलोमोर्फिक डिस्क और तीन गुना अपरिवर्तनीय: गुण और अनुप्रयोग". Ann. of Math. 159 (3): 1159–1245. arXiv:math/0105202. Bibcode:2001math......5202O. doi:10.4007/annals.2004.159.1159. S2CID 8154024.
- Ozsváth, Peter; Szabó, Zoltán (2004). "होलोमोर्फिक डिस्क और गाँठ अपरिवर्तनीय". Advances in Mathematics. 186 (1): 58–116. arXiv:math.GT/0209056. doi:10.1016/j.aim.2003.05.001.
- Ozsváth, Peter; Szabó, Zoltán (2005). "ब्रांच्ड डबल-कवर की हीगार्ड फ़्लोर होमोलॉजी पर". Advances in Mathematics. 194 (1): 1–33. arXiv:math.GT/0209056. Bibcode:2003math......9170O. doi:10.1016/j.aim.2004.05.008. S2CID 17245314.
- Rasmussen, Jacob (2003). "फ़्लोर होमोलॉजी और गाँठ पूरक". arXiv:math/0306378.
- Salamon, Dietmar; Wehrheim, Katrin (2008). "लैग्रेंजियन सीमा स्थितियों के साथ इंस्टेंटन फ़्लोर होमोलॉजी". Geometry & Topology. 12 (2): 747–918. arXiv:math/0607318. doi:10.2140/gt.2008.12.747. S2CID 119680541.
- Sarkar, Sucharit; Wang, Jiajun (2010). "कुछ हीगार्ड फ़्लोर समरूपताओं की गणना के लिए एक एल्गोरिदम". Ann. of Math. 171 (2): 1213–1236. arXiv:math/0607777. doi:10.4007/annals.2010.171.1213. S2CID 55279928.
- Hutchings (2009). एंबेडेड संपर्क होमोलॉजी इंडेक्स पर दोबारा गौर किया गया. pp. 263–297. arXiv:0805.1240. Bibcode:2008arXiv0805.1240H. doi:10.1090/crmp/049/10. ISBN 9780821843567. S2CID 7751880.
{{cite book}}
:|journal=
ignored (help) - Taubes, Clifford (2007). "सीबर्ग-विटन समीकरण और वीस्टीन अनुमान". Geom. Topol. 11 (4): 2117–2202. arXiv:math/0611007. doi:10.2140/gt.2007.11.2117. S2CID 119680690.
- Piunikhin, Sergey; Salamon, Dietmar; Schwarz, Matthias (1996). "Symplectic Floer–Donaldson theory and quantum cohomology". संपर्क और सिंपलेक्टिक ज्यामिति. Cambridge University Press. pp. 171–200. ISBN 978-0-521-57086-2.