टाइकोनोफ़ का प्रमेय
गणित में, टाइकोनोफ़ के प्रमेय में कहा गया है कि सघन स्थान टोपोलॉजिकल स्पेस के किसी भी संग्रह का उत्पाद उत्पाद टोपोलॉजी के संबंध में कॉम्पैक्ट है। प्रमेय का नाम एंड्री निकोलाइविच तिखोनोव (जिनका उपनाम कभी-कभी टाइकोनोफ़ लिखा जाता है) के नाम पर रखा गया है, जिन्होंने बंद इकाई अंतराल की शक्तियों के लिए इसे पहली बार 1930 में सिद्ध किया था और 1935 में इस टिप्पणी के साथ पूर्ण प्रमेय बताया था कि इसका प्रमाण इस प्रकार था जैसे की विशेष स्थितियों के समान होता है। सबसे पहला ज्ञात प्रकाशित प्रमाण टाइकोनोफ़, A. के 1935 के लेख "उबेर एइनेन फंकटियोनेंरम", अंक शास्त्र एनल्स, 111, पीपी. 762-766 (1935) में निहित है। (यह संदर्भ हॉकिंग एंड यंग, डोवर पब्लिकेशंस, इंडस्ट्रीज़ द्वारा टोपोलॉजी में उल्लिखित है।)
टाइकोनोफ़ के प्रमेय को अधिकांशतः सामान्य टोपोलॉजी में संभवतः सबसे महत्वपूर्ण परिणाम माना जाता है[1] क्योंकि (यूरीसोहन के लेम्मा के साथ)। यह प्रमेय फ़ज़ी समुच्योंपर आधारित टोपोलॉजिकल स्पेस के लिए भी मान्य है।[2]
टोपोलॉजिकल परिभाषाएँ
यह प्रमेय कॉम्पैक्ट स्पेस और उत्पाद टोपोलॉजी की स्पष्ट परिभाषाओं पर महत्वपूर्ण रूप से निर्भर करता है; वास्तव में, टाइकोनॉफ़ का 1935 का पेपर पहली बार उत्पाद टोपोलॉजी को परिभाषित करता है। इसके विपरीत, इसके महत्व का हिस्सा यह विश्वास दिलाना है कि ये विशेष परिभाषाएँ सबसे उपयोगी है (अर्थात सबसे अच्छी तरह से व्यवहार की जाने वाली) हैं।
वास्तव में, सघनता की हेइन-बोरेल परिभाषा - कुछ इस प्रकार है कि खुले समुच्यों द्वारा किसी स्थान का प्रत्येक आवरण परिमित उपकवरिंग को स्वीकार करता है -तथा ये दर्शाता है की अपेक्षाकृत वर्तमान में ही है। जब 19वीं और 20वीं सदी की प्रारंभ में बोलजानो-विअरस्ट्रास मानदंड अधिक लोकप्रिय था कि प्रत्येक घिरा हुआ अनंत अनुक्रम अभिसरण परिणाम को स्वीकार करता है, जिसे अब क्रमिक रूप से कॉम्पैक्ट कहा जाता है। ये स्थितियाँ मेट्रिज़ेबल रिक्त स्थान के लिए समतुल्य हैं, लेकिन सभी टोपोलॉजिकल रिक्त स्थान के वर्ग में कोई भी दूसरे का तात्पर्य नहीं करता है।
यह सिद्ध करना लगभग तुच्छ है कि दो क्रमिक रूप से कॉम्पैक्ट स्थानों का उत्पाद क्रमिक रूप से कॉम्पैक्ट होता है - जो कि पहले घटक के लिए अनुवर्ती में जाता है और फिर दूसरे घटक के लिए उपअनुक्रम में जाता है। केवल थोड़ा अधिक विस्तृत विकर्णीकरण तर्क क्रमिक रूप से कॉम्पैक्ट स्थानों के गणनीय उत्पाद की अनुक्रमिक कॉम्पैक्टनेस स्थापित करता है। चूँकि कॉन्टिनम (समुच्चय सिद्धांत) का उत्पाद बंद इकाई अंतराल की अनेक प्रतियां (इसकी सामान्य टोपोलॉजी के साथ) उत्पाद टोपोलॉजी के संबंध में क्रमिक रूप से कॉम्पैक्ट होने में विफल रहता है, भले ही यह टाइकोनॉफ के प्रमेय द्वारा कॉम्पैक्ट का उपयोग किया जाता है (उदाहरण के लिए, देखें) विलांस्की 1970, p. 134 ).
यह गंभीर विफलता है: कि यदि X पूरी तरह से नियमित हॉसडॉर्फ स्थान है, तो X से [0,1]C(X,[0,1]) में प्राकृतिक एम्बेडिंग है, जहां C(X,[0,1]) X से [0,1] तक सतत मानचित्रों का समूह है। [0,1]C(X,[0,1]) की सघनता इस प्रकार दर्शाता है कि प्रत्येक पूरी तरह से नियमित हॉसडॉर्फ़ स्थान कॉम्पैक्ट हॉसडॉर्फ़ स्थान में एम्बेड होता है (या, कॉम्पैक्ट किया जा सकता है।) यह निर्माण स्टोन-सेच कॉम्पेक्टिफिकेशन है। इसके विपरीत, कॉम्पैक्ट हॉसडॉर्फ़ के रिक्त स्थान के सभी उप-स्थान पूरी तरह से नियमित हॉसडॉर्फ़ हैं, इसलिए यह पूरी तरह से नियमित हॉसडॉर्फ़ रिक्त स्थान की विशेषता बताता है जिन्हें कॉम्पैक्ट किया जा सकता है। ऐसे स्थानों को अब टाइकोनोफ़ स्थान भी कहा जाता है।
अनुप्रयोग
टाइकोनोफ़ के प्रमेय का उपयोग अनेक अन्य गणितीय प्रमेयों को सिद्ध करने के लिए किया गया है। इनमें कुछ स्थानों की सघनता के बारे में प्रमेय भी सम्मिलित हैं जैसे कि मानक सदिश अंतरिक्ष के दोहरे स्थान की यूनिट बॉल की अशक्त- सघनता पर बानाच-अला ओग्लू प्रमेय, और अर्ज़ेला-अस्कोली प्रमेय जो कार्यों के अनुक्रमों की विशेषता बताते हैं जिनमें प्रत्येक अनुवर्ती समान अभिसरण अनुवर्ती है। इनमें कॉम्पैक्टनेस से कम स्पष्ट रूप से संबंधित कथन भी सम्मिलित हैं, डी ब्रुजन-एर्डोस प्रमेय (ग्राफ सिद्धांत) होती है | जैसे कि डी ब्रुजन-एर्डोस प्रमेय है जिसमें कहा गया है कि प्रत्येक महत्वपूर्ण ग्राफ न्यूनतम के-क्रोमैटिक ग्राफ परिमित है और कर्टिस-हेडलंड-लिंडन प्रमेय सेलुलर ऑटोमेटन का टोपोलॉजिकल लक्षण वर्णन प्रदान करता है।
सामान्य नियम के रूप में, किसी भी प्रकार का निर्माण जो इनपुट के रूप में अधिक सामान्य वस्तु (अधिकांशतः बीजगणितीय, या टोपोलॉजिकल-बीजगणितीय प्रकृति का) लेता है और कॉम्पैक्ट स्पेस आउटपुट करता है, टाइकोनॉफ का उपयोग करने की संभावना है: उदाहरण के लिए, अधिकतम आदर्शों का गेलफैंड प्रतिनिधित्व क्रमविनिमेय C*-बीजगणित, बूलियन बीजगणित (संरचना) के अधिकतम आदर्शों का पत्थर की स्थान , और क्रमविनिमेय बनच वलय का बर्कोविच स्पेक्ट्रम आदि है।
टाइकोनोफ़ के प्रमेय के प्रमाण
1) टाइकोनोफ़ के 1930 प्रमाण में पूर्ण संचय बिंदु की अवधारणा का उपयोग किया गया है ।
2) यह प्रमेय अलेक्जेंडर सबबेस प्रमेय का त्वरित परिणाम है।
अधिक आधुनिक प्रमाण निम्नलिखित विचारों से प्रेरित हुए हैं: इसके पश्चात् के अनुक्रमों के अभिसरण के माध्यम से कॉम्पैक्टनेस का दृष्टिकोण गणनीय सूचकांक समुच्चय के स्थितियों में सरल और पारदर्शी प्रमाण की ओर ले जाता है। चूँकि , अनुक्रमों का उपयोग करके टोपोलॉजिकल स्पेस में अभिसरण का दृष्टिकोण पर्याप्त है जब स्पेस काउंटेबिलिटी के पहले सिद्धांत को संतुष्ट करता है (जैसा कि मेट्रिज़ेबल स्पेस करते हैं), लेकिन सामान्यतः अन्यथा नहीं। चूँकि , अत्यधिक अनेक मेट्रिज़ेबल स्थानों का उत्पाद होना तथा प्रत्येक कम से कम दो बिंदुओं के साथ पहले गणनीय होने में विफल रहता है। इसलिए यह आशा करना स्वाभाविक है कि इच्छानुसार स्थानों में अभिसरण की उपयुक्त धारणा, मेट्रिज़ेबल स्थानों में अनुक्रमिक कॉम्पैक्टनेस को सामान्य बनाने वाली कॉम्पैक्टनेस मानदंड को जन्म देगी,जो उत्पादों की कॉम्पैक्टनेस को कम करने के लिए आसानी से प्रयुक्त की जाएगी। ये तब बात हो गयी.
3) फिल्टर के माध्यम से अभिसरण का सिद्धांत, हेनरी कर्तन के कारण और 1937 में निकोलस बॉर्बकी द्वारा विकसित,की गई थी तथा इसको निम्नलिखित मानदंड की ओर ले जाता है: अल्ट्राफिल्टर लेम्मा मानते हुए स्थान कॉम्पैक्ट होता है और केवल अंतरिक्ष पर प्रत्येक अल्ट्राफिल्टर (समुच्चय सिद्धांत) अभिसरण करता है . इसे हाथ में लेने से, प्रमाण आसान हो जाता है: किसी भी प्रक्षेपण मानचित्र के अनुसार उत्पाद स्थान पर अल्ट्राफिल्टर की छवि (फ़िल्टर द्वारा उत्पन्न) कारक स्थान पर अल्ट्राफ़िल्टर है, जो इसलिए कम से कम xi में परिवर्तित हो जाती है. फिर दिखाता है कि मूल अल्ट्राफ़िल्टर x = (xi) में परिवर्तित हो जाता है). अपनी पाठ्यपुस्तक में, जेम्स मंक्रेस कार्टन-बोरबाकी प्रमाण का पुनर्मूल्यांकन करते हैं जो स्पष्ट रूप से किसी फ़िल्टर-सैद्धांतिक भाषा या प्रारंभिक का उपयोग नहीं करता है।
4) इसी तरह, नेट के माध्यम से अभिसरण का मूर-स्मिथ अनुक्रम मूर-स्मिथ सिद्धांत है , जैसा कि केली की नेट (गणित) की धारणा से पूरक है, इस मानदंड की ओर ले जाता है कि स्थान कॉम्पैक्ट है यदि और केवल तभी जब प्रत्येक सार्वभौमिक नेट अंतरिक्ष पर हो जुटता है. यह मानदंड टाइकोनोफ़ के प्रमेय के प्रमाण (केली, 1950) की ओर ले जाता है, जो शब्द दर शब्द, फ़िल्टर का उपयोग करके कार्टन/बोरबाकी प्रमाण के समान है, अल्ट्राफ़िल्टर बेस के लिए यूनिवर्सल नेट के बार-बार प्रतिस्थापन को छोड़कर किया जाता है ।
5) 1992 में पॉल चेर्नॉफ़ द्वारा जालों का उपयोग करते हुए प्रमाण दिया गया था, लेकिन सार्वभौमिक जालों का नहीं,।
टाइकोनोफ़ का प्रमेय और पसंद का स्वयंसिद्ध
उपरोक्त सभी प्रमाण किसी न किसी रूप में पसंद के सिद्धांत (एसी) का उपयोग करते हैं। उदाहरण के लिए, तीसरा प्रमाण यह उपयोग करता है कि प्रत्येक फ़िल्टर अल्ट्राफिल्टर (अर्थात, अधिकतम फ़िल्टर) में समाहित होता है, और इसे ज़ोर्न के लेम्मा को प्रयुक्त करके देखा जाता है। ज़ोर्न की लेम्मा का उपयोग केली के प्रमेय को सिद्ध करने के लिए भी किया जाता है, कि प्रत्येक नेट में सार्वभौमिक सबनेट होता है। वास्तव में एसी के ये उपयोग आवश्यक हैं: 1950 में केली ने सिद्ध किया कि टाइकोनॉफ़ का प्रमेय ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत में पसंद के सिद्धांत का तात्पर्य है। ध्यान दें कि एसी का सूत्रीकरण यह है कि गैर-रिक्त समुच्योंके परिवार का कार्टेशियन उत्पाद गैर-रिक्त है; लेकिन चूंकि खाली समुच्चय निश्चित रूप से कॉम्पैक्ट है, इसलिए प्रमाण इतनी सीधी रेखाओं के साथ आगे नहीं बढ़ सकता है। इस प्रकार टाइकोनॉफ़ का प्रमेय एसी के समतुल्य होने में अनेक अन्य मूलभूतप्रमेयों (जैसे कि प्रत्येक सदिश स्पेस का आधार होता है) से जुड़ता है।
दूसरी ओर, यह कथन कि प्रत्येक फिल्टर अल्ट्राफिल्टर में समाहित है, इसका अर्थ एसी नहीं है। वास्तव में, यह देखना कठिन नहीं है कि यह बूलियन प्राइम आदर्श प्रमेय (बीपीआई) के समतुल्य है, जो ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफ) के सिद्धांतों और पसंद के सिद्धांत द्वारा संवर्धित जेडएफ सिद्धांत के मध्य प्रसिद्ध मध्यवर्ती बिंदु है। (जेडएफसी)। टाइचनॉफ़ के दूसरे प्रमाण पर पहली नज़र यह सुझाव दे सकती है कि उपरोक्त के विपरीत, प्रमाण (बीपीआई) से अधिक का उपयोग नहीं करता है। चूँकि , वे स्थान जिनमें प्रत्येक अभिसरण फ़िल्टर की अद्वितीय सीमा होती है, स्पष्ट रूप से हॉसडॉर्फ रिक्त स्थान होते हैं। सामान्यतः हमें इंडेक्स समुच्चय के प्रत्येक तत्व के लिए, अनुमानित अल्ट्राफिल्टर बेस की सीमाओं के गैर-रिक्त समुच्चय का तत्व चुनना होगा, और निश्चित रूप से यह एसी का उपयोग करता है। चूँकि , यह यह भी दर्शाता है कि कॉम्पैक्ट हॉसडॉर्फ रिक्त स्थान के उत्पाद की कॉम्पैक्टनेस (बीपीआई) का उपयोग करके सिद्ध की जा सकती है, और वास्तव में इसका विपरीत भी प्रयुक्त होता है। रिक्त स्थान के विभिन्न प्रतिबंधित वर्गों के लिए टाइकोनॉफ़ के प्रमेय की ताकत का अध्ययन समुच्चय-सैद्धांतिक टोपोलॉजी में सक्रिय क्षेत्र है।
व्यर्थ टोपोलॉजी में टाइकोनोफ़ के प्रमेय के एनालॉग को पसंद के स्वयंसिद्ध के किसी भी रूप की आवश्यकता नहीं होती है।
टाइकोनोफ़ के प्रमेय से पसंद के स्वयंसिद्ध का प्रमाण
यह सिद्ध करने के लिए कि टाइकोनॉफ़ का प्रमेय अपने सामान्य संस्करण में पसंद के स्वयंसिद्ध को दर्शाता है, हम स्थापित करते हैं कि गैर-रिक्त समुच्योंका प्रत्येक अनंत कार्टेशियन उत्पाद गैर-रिक्त है। प्रमाण का सबसे पेचीदा हिस्सा सही टोपोलॉजी का परिचय देना है। सही टोपोलॉजी, जैसा कि पता चला है, छोटे से मोड़ के साथ सहपरिमित टोपोलॉजी है। यह पता चला है कि इस टोपोलॉजी को दिया गया प्रत्येक समुच्चय स्वचालित रूप से कॉम्पैक्ट स्पेस बन जाता है। बार जब हमारे पास यह तथ्य आ जाए, तब टाइकोनोफ़ के प्रमेय को प्रयुक्त किया जा सकता है; फिर हम सघनता की परिमित प्रतिच्छेदन संपत्ति (एफआईपी) परिभाषा का उपयोग करते हैं। प्रमाण स्वयं (जे.एल. केली के कारण) इस प्रकार है:
चलो {Ai} गैर-रिक्त समुच्यों का अनुक्रमित परिवार बनें | i के लिए (जहां I इच्छानुसार अनुक्रमण समुच्चय है)। हम यह दिखाना चाहते हैं कि इन समुच्यों का कार्टेशियन उत्पाद गैर-रिक्त है। अब, प्रत्येक i के लिए, Xi को Ai के रूप में | जिस सूचकांक पर मैंने स्वयं काम किया है (यदि आवश्यक हो तब असंयुक्त संघ का उपयोग करके सूचकांकों का नाम बदलना, हम मान सकते हैं कि मैं Ai का सदस्य नहीं हूं), इसलिए बस Xi = Ai∪ {i}) लें|.
अब कार्तीय गुणनफल को परिभाषित करें
हम प्रत्येक को Xj देते हैं टोपोलॉजी जिसके खुले समुच्चय हैं: खाली समुच्चय, सिंगलटन {i}, समुच्चय Xi. इससे Xi कॉम्पैक्ट, बनता है और टाइकोनोफ़ के प्रमेय के अनुसार, X भी कॉम्पैक्ट है (उत्पाद टोपोलॉजी में)। प्रक्षेपण मानचित्र सतत होते हैं; सभी Ais बंद हैं, X में सिंगलटन (गणित) ओपन समुच्चय {i} के पूरक हैंi. तब व्युत्क्रम छवियाँ πi−1(Ai) X के बंद उपसमुच्चय हैं। हम उस पर ध्यान देते हैं
गैर-रिक्त है (यहां केवल सीमित विकल्प हैं, इसलिए एसी की आवश्यकता नहीं है); इसमें केवल N-टुपल्स सम्मिलित हैं। माना a = (a1, ..., aN) ऐसे N-ट्यूपल बनें। हम a को संपूर्ण सूचकांक समुच्चय तक विस्तारित करते हैं: a को f(j) = ak द्वारा परिभाषित फलन f पर ले जाते हैं यदि j = ik, और f(j) = j अन्यथा इस प्रकार है । यह चरण वह है जहां प्रत्येक स्थान पर अतिरिक्त बिंदु जोड़ना महत्वपूर्ण है, क्योंकि यह हमें बिना किसी विकल्प के स्पष्ट तरीके से N-टुपल के बाहर हर चीज के लिए f को परिभाषित करने की अनुमति देता है (हम पहले से ही निर्माण द्वारा, x से जे चुन सकते हैं). अनुकरणीय πik(f) = ak स्पष्ट रूप से प्रत्येक aik का तत्व है जिससे प्रत्येक f व्युत्क्रम छवि में हो; इस प्रकार हमारे पास है
यह भी देखें
टिप्पणियाँ
- ↑ Stephen Willard, "General Topology", Dover Books, ISBN 978-0-486-43479-7, pp. 120.
- ↑ Joseph Goguen, "The Fuzzy Tychonoff Theorem", Journal of Mathematical Analysis and Applications, volume 43, issue 3, September 1973, pp. 734–742.
संदर्भ
- Chernoff, Paul R. (1992), "A simple proof of Tychonoff's theorem via nets", American Mathematical Monthly, 99 (10): 932–934, doi:10.2307/2324485, JSTOR 2324485.
- Johnstone, Peter T. (1982), Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3, New York: Cambridge University Press, ISBN 0-521-23893-5.
- Johnstone, Peter T. (1981), "Tychonoff's theorem without the axiom of choice", Fundamenta Mathematicae, 113: 21–35, doi:10.4064/fm-113-1-21-35.
- Kelley, John L. (1950), "Convergence in topology", Duke Mathematical Journal, 17 (3): 277–283, doi:10.1215/S0012-7094-50-01726-1.
- Kelley, John L. (1950), "The Tychonoff product theorem implies the axiom of choice", Fundamenta Mathematicae, 37: 75–76, doi:10.4064/fm-37-1-75-76.
- Munkres, James R. (2000). Topology (Second ed.). Upper Saddle River, NJ: Prentice Hall, Inc. ISBN 978-0-13-181629-9. OCLC 42683260.
- Tychonoff, Andrey N. (1930), "Über die topologische Erweiterung von Räumen", Mathematische Annalen (in Deutsch), 102 (1): 544–561, doi:10.1007/BF01782364.
- Wilansky, A. (1970), Topology for Analysis, Ginn and Company
- Willard, Stephen (2004) [1970]. General Topology. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43479-7. OCLC 115240.
- Wright, David G. (1994), "Tychonoff's theorem.", Proc. Amer. Math. Soc., 120 (3): 985–987, doi:10.1090/s0002-9939-1994-1170549-2.
बाहरी संबंध
- टाइकोनोफ़ का प्रमेय at ProofWiki
- Mizar system proof: http://mizar.org/version/current/html/yellow17.html#T23