न्यूनतम मॉडल कार्यक्रम

From Vigyanwiki

बीजगणितीय ज्यामिति में, न्यूनतम मॉडल कार्यक्रम बीजगणितीय किस्मों के द्विवार्षिक वर्गीकरण का हिस्सा है। इसका लक्ष्य किसी भी जटिल प्रक्षेप्य विविधता का द्विवार्षिक मॉडल बनाना है जो यथासंभव सरल हो। इस विषय की उत्पत्ति इतालवी बीजगणितीय ज्यामिति स्कूल द्वारा अध्ययन की गई सतहों की शास्त्रीय द्विवार्षिक ज्यामिति में हुई है, और वर्तमान में यह बीजगणितीय ज्यामिति के भीतर सक्रिय अनुसंधान क्षेत्र है।

रूपरेखा

सिद्धांत का मूल विचार प्रत्येक द्विवार्षिक तुल्यता वर्ग में, ऐसी विविधता खोजकर किस्मों के द्विवार्षिक वर्गीकरण को सरल बनाना है जो यथासंभव सरल हो। इस वाक्यांश का सटीक अर्थ विषय के विकास के साथ विकसित हुआ है; मूल रूप से सतहों के लिए, इसका मतलब चिकनी किस्म ढूंढना था जिसके लिए कोई भी द्विवार्षिक नियमित मानचित्र (बीजगणितीय ज्यामिति) चिकनी सतह के साथ समरूपता है.

आधुनिक सूत्रीकरण में सिद्धांत का लक्ष्य इस प्रकार है। मान लीजिए हमें प्रक्षेपी किस्म दी गई है , जिसे सरलता के लिए गैर-विलक्षण माना जाता है। इसके कोडैरा आयाम के आधार पर दो मामले हैं, :[1]

  • हम विविधता खोजना चाहते हैं द्विवार्षिक वह , और रूपवाद प्रक्षेपी किस्म के लिए ऐसा है कि विहित वर्ग के साथ सामान्य फाइबर का पर्याप्त लाइन बंडल होना। इस तरह के रूपवाद को फैनो फ़िब्रेशन कहा जाता है।
  • हम खोजना चाहते हैं द्विवार्षिक वह , विहित वर्ग के साथ संख्यात्मक रूप से प्रभावी. इस मामले में, के लिए न्यूनतम मॉडल है .

सवाल यह है कि क्या किस्में और ऊपर प्रदर्शित होना गैर-विलक्षण है, यह महत्वपूर्ण बात है। यदि हम सहजता से शुरुआत करें तो यह आशा स्वाभाविक लगती है , तो हम हमेशा चिकनी किस्मों की श्रेणी के अंदर न्यूनतम मॉडल या फ़ानो फाइबर स्थान पा सकते हैं। हालाँकि, यह सच नहीं है, और इसलिए एकल किस्मों पर भी विचार करना आवश्यक हो जाता है। जो विलक्षणताएँ प्रकट होती हैं उन्हें टर्मिनल विलक्षणताएँ कहा जाता है।

सतहों के न्यूनतम मॉडल

प्रत्येक अपरिवर्तनीय जटिल बीजगणितीय वक्र अद्वितीय चिकनी प्रक्षेप्य वक्र के लिए द्विवार्षिक है, इसलिए वक्रों के लिए सिद्धांत तुच्छ है। सतहों के मामले की जांच सबसे पहले 1900 के आसपास इतालवी स्कूल के जियोमीटर द्वारा की गई थी; गुइडो कैस्टेलनुवोवो का कैस्टेलनुओवो संकुचन प्रमेय अनिवार्य रूप से किसी भी सतह के न्यूनतम मॉडल के निर्माण की प्रक्रिया का वर्णन करता है। प्रमेय बताता है कि कोई भी गैर-तुच्छ द्विवार्षिक रूपवाद −1-वक्र को चिकने बिंदु पर अनुबंधित करना होगा, और इसके विपरीत ऐसे किसी भी वक्र को आसानी से अनुबंधित किया जा सकता है। यहां −1-वक्र स्व-प्रतिच्छेदन के साथ सहज तर्कसंगत वक्र C है ऐसा कोई भी वक्र अवश्य होना चाहिए जो दर्शाता है कि यदि विहित वर्ग नेफ है तो सतह पर कोई −1-वक्र नहीं है।

कैस्टेलनोवो के प्रमेय का तात्पर्य है कि चिकनी सतह के लिए न्यूनतम मॉडल का निर्माण करने के लिए, हम बस सतह पर सभी −1-वक्रों को आकारवाद में संकुचन करते हैं, और परिणामी विविधता Y या तो K नेफ के साथ (अद्वितीय) न्यूनतम मॉडल है, या शासित सतह है ( जो 2-आयामी फ़ानो फ़ाइबर स्पेस के समान है, और या तो प्रक्षेप्य तल है या वक्र के ऊपर शासित सतह है)। दूसरे मामले में, एक्स के लिए शासित द्विवार्षिक सतह अद्वितीय नहीं है, हालांकि प्रक्षेप्य रेखा और वक्र के उत्पाद के लिए अद्वितीय आइसोमोर्फिक है। कुछ हद तक सूक्ष्म बात यह है कि भले ही सतह में अनंत रूप से कई -1-वक्र हो सकते हैं, किसी को बिना -1-वक्र वाली सतह प्राप्त करने के लिए उनमें से केवल सीमित रूप से कई को अनुबंधित करने की आवश्यकता होती है।

उच्च-आयामी न्यूनतम मॉडल

2 से बड़े आयामों में, सिद्धांत कहीं अधिक शामिल हो जाता है। विशेष रूप से, वहाँ चिकनी योजना मौजूद हैं जो किसी भी सहज किस्म के लिए द्विवार्षिक नहीं हैं नेफ लाइन बंडल के साथ। 1970 और 1980 के दशक की शुरुआत में प्रमुख वैचारिक प्रगति यह थी कि न्यूनतम मॉडलों का निर्माण अभी भी संभव है, बशर्ते कि व्यक्ति घटित होने वाली विलक्षणताओं के प्रकारों के बारे में सावधान रहे। (उदाहरण के लिए, हम यह तय करना चाहते हैं कि क्या नेफ़ है, इसलिए प्रतिच्छेदन संख्याएँ परिभाषित किया जाना चाहिए. इसलिए, कम से कम, हमारी किस्मों में तो होना ही चाहिए किसी धनात्मक पूर्णांक के लिए कार्टियर विभाजक होना .)

पहला मुख्य परिणाम महत्वपूर्ण सांस्कृतिक संपदा मोरी का वक्र शंकु है, जो वक्र शंकु की संरचना का वर्णन करता है . संक्षेप में, प्रमेय से पता चलता है कि शुरुआत से , कोई भी प्रेरक रूप से किस्मों का क्रम बना सकता है , जिनमें से प्रत्येक पिछले वाले की तुलना में अधिक निकट है नेफ. हालाँकि, इस प्रक्रिया में कठिनाइयों का सामना करना पड़ सकता है: कुछ बिंदु पर विविधता बहुत एकल हो सकता है. इस समस्या का अनुमानित समाधान फ्लिप (बीजगणितीय ज्यामिति) है, जो प्रकार का कोडिमेंशन-2 सर्जरी ऑपरेशन है। . यह स्पष्ट नहीं है कि आवश्यक फ़्लिप मौजूद हैं, न ही वे हमेशा समाप्त हो जाते हैं (अर्थात, कोई न्यूनतम मॉडल तक पहुँच जाता है बहुत से चरणों में।) Mori (1988) ने दिखाया कि फ़्लिप 3-आयामी मामले में मौजूद हैं।

अधिक सामान्य लॉग फ़्लिप का अस्तित्व व्याचेस्लाव शोकरोव द्वारा तीन और चार आयामों में स्थापित किया गया था। इसे बाद में कॉचर बिरकर, पाओलो कैसिनी, क्रिस्टोफर हैकोन और जेम्स मैककर्नन द्वारा शोकरोव और हैकॉन और मैककर्नन के पहले के काम पर भरोसा करते हुए उच्च आयामों के लिए सामान्यीकृत किया गया। उन्होंने लॉग कैनोनिकल रिंगों की सीमित पीढ़ी और लॉग सामान्य प्रकार की किस्मों के लिए न्यूनतम मॉडल के अस्तित्व सहित कई अन्य समस्याओं को भी साबित किया।

उच्च आयामों में लॉग फ़्लिप की समाप्ति की समस्या सक्रिय शोध का विषय बनी हुई है।

यह भी देखें

संदर्भ

  1. Note that the Kodaira dimension of an n-dimensional variety is either or an integer in the range 0 to n.