पियर्स अपघटन

From Vigyanwiki
Revision as of 09:43, 26 July 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

वलय सिद्धांत में, पीयर्स अपघटन /ˈpɜːrs/ बीजगणित का एक अपघटन है जो इडेम्पोटेंट तत्व (वलय सिद्धांत) के ईजेनस्पेस के योग के रूप में होता है।

एसोसिएटिव बीजगणित के लिए पीयर्स अपघटन बेंजामिन पीयर्स (1870, प्रस्ताव 41, पृष्ठ 13) द्वारा प्रस्तुत किया गया था। जॉर्डन बीजगणित के लिए एक समान किन्तु अधिक जटिल पीयर्स अपघटन अल्बर्ट (1947) द्वारा प्रस्तुत किया गया था।

एसोसिएटिव बीजगणित के लिए पियर्स अपघटन

यदि एसोसिएटिव बीजगणित A में e एक इडेम्पोटेंट (e2 = e) है, तो दो तरफा पीयरस अपघटन A को eAe, eA(1 − e), (1 − e)Ae, और (1 − e)A(1 − e) के प्रत्यक्ष योग के रूप में लिखता है। बाएँ और दाएँ पियर्स अपघटन भी हैं, जहाँ बायाँ अपघटन A को eA और (1 − e)A के प्रत्यक्ष योग के रूप में लिखता है, और दायाँ A को Ae और A(1 − e) के प्रत्यक्ष योग के रूप में लिखता है।

अधिक सामान्यतः पर, यदि e1, ..., en योग 1 के साथ पारस्परिक रूप से ऑर्थोगोनल इडेम्पोटेंट हैं, तो A 1 ≤ i, jn के लिए रिक्त स्थान eiAej का प्रत्यक्ष योग है।

ब्लॉक

किसी वलय के एक इडेम्पोटेंट को केंद्रीय कहा जाता है यदि वह वलय के सभी तत्वों के साथ संचार करता है।

यदि ef = fe = 0 है तो दो इडेम्पोटेंट्स e, f को ऑर्थोगोनल कहा जाता है।

एक इडेम्पोटेंट को अभाज्य कहा जाता है यदि यह शून्येतर है और इसे दो ऑर्थोगोनल अशून्य इडेम्पोन्ट्स के योग के रूप में नहीं लिखा जा सकता है।

एक इडेम्पोटेंट e को एक ब्लॉक या केंद्रीय रूप से अभाज्य कहा जाता है यदि यह गैर-शून्य और केंद्रीय है और इसे दो ऑर्थोगोनल गैर-शून्य केंद्रीय इडेम्पोटेंट के योग के रूप में नहीं लिखा जा सकता है। इस स्थिति में आदर्श eR को कभी-कभी ब्लॉक भी कहा जाता है।

यदि किसी वलय की पहचान 1 R को योग के रूप में लिखा जा सकता है

1 = e1 + ... + en

ऑर्थोगोनल नॉनज़ेरो सेंट्रली अभाज्य इडेम्पोटेंट्स के स्थिति में ये इडेम्पोटेंट क्रम के अनुसार अद्वितीय होते हैं और इन्हें ब्लॉक या वलय आर कहा जाता है। इस स्थिति में वलय R को अविभाज्य वलयों के प्रत्यक्ष योग

R = e1R + ... + enR

के रूप में लिखा जा सकता है, जिन्हें कभी-कभी आर के ब्लॉक भी कहा जाता है।

संदर्भ

  • Albert, A. Adrian (1947), "A structure theory for Jordan algebras", Annals of Mathematics, Second Series, 48: 546–567, doi:10.2307/1969128, ISSN 0003-486X, JSTOR 1969128, MR 0021546
  • Lam, T. Y. (2001), A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-95183-6, MR 1838439
  • Peirce, Benjamin (1870), Linear associative algebra, ISBN 978-0-548-94787-6
  • Skornyakov, L.A. (2001) [1994], "पियर्स अपघटन", Encyclopedia of Mathematics, EMS Press


बाहरी संबंध