चतुर्थक पारस्परिकता
चतुर्थक या संख्या सिद्धांत पारस्परिकता प्राथमिक और बीजगणितीय संख्या सिद्धांत में प्रमेयों का एक संग्रह है जो उन स्थितियों को दर्शाता है जिनके तहत सर्वांगसम संबंध x4 ≡ p (mod q) हल करने योग्य है; शब्द "पारस्परिकता" इनमें से कुछ प्रमेयों के रूप से दर्शाया गया है, जिसमें वे सर्वांगसमता x4 ≡ p (mod q) की सॉल्वेबिलिटी को x4 ≡ q (mod p) से जोड़ते हैं।
इतिहास
लियोनहार्ड यूलर ने द्विघात पारस्परिकता के पश्चात प्रतम अनुमान लगाया था।[1] जिसे कार्ल फ्रेडरिक गॉस ने द्विघात पारस्परिकता पर दो मोनोग्राफ प्रकाशित किए थे। प्रथम भाग (1828) में उन्होंने 2 के द्विघात चरित्र के पश्चात में यूलर के अनुमान को सिद्ध किया था। और दूसरे भाग (1832) में उन्होंने गॉसियन पूर्णांकों के लिए द्विघात पारस्परिकता नियम बताया और पूरक सूत्रों को सिद्ध किया गया था। उन्होंने कहा[2] कि सामान्य प्रमेय के प्रमाण के साथ तीसरा मोनोग्राफ आने वाला था, किन्तु यह कभी सामने नहीं आया था। जैकोबी ने 1836-37 के अपने कोनिग्सबर्ग व्याख्यान में प्रमाण प्रस्तुत किये। रेफरी>लेमरमेयर, पी। 200</ref> सर्वप्रथम प्रकाशित प्रमाण आइज़ेंस्टीन द्वारा थे। रेफरी>आइसेंस्टीन, लोइस डी पारस्परिकता</ref>[3][4][5]
इस प्रकार से मौलिक (गाऊसी) संस्करण के अनेक अन्य प्रमाण मिले हैं,[6] और साथ ही वैकल्पिक कथन भी प्राप्त किये गए है। लेमरमेयर का कथन यह है कि 1970 के दशक से तर्कसंगत पारस्परिकता कानून में रुचि का विस्फोट हुआ है।[A][7]
पूर्णांक
इस प्रकार से चतुर्थक या द्विघात अवशेष (mod p) पूर्णांक (mod p) की चौथी घात के अनुरूप कोई भी संख्या है। यदि x4 ≡ a (mod p) का कोई पूर्णांक समाधान नहीं है, तब a 'चतुर्थक' या 'द्विघात गैर-अवशेष' (mod p) है।[8]
जैसा कि संख्या सिद्धांत में प्रायः होता है, mod्यूलो अभाज्य संख्याओं पर कार्य करना अधिक समान है, इसलिए इस खंड में सभी mod्यूल p, q, आदि को धनात्मक, विषम अभाज्य माना जाता है।[8]
गॉस
पूर्णांकों के वलय Z के भीतर काम करते समय ध्यान देने वाली पहली बात यह है कि यदि अभाज्य संख्या q ≡ 3 (mod 4) है तो अवशेष r द्विघात अवशेष (mod q) है ) यदि और केवल यदि यह द्विघात अवशेष (mod q) है। दरअसल, द्विघात पारस्परिकता के पहले पूरक में कहा गया है कि -1 द्विघात गैर-अवशेष (mod q) है, इसलिए किसी भी पूर्णांक x के लिए, x और -x में से द्विघात अवशेष है और दूसरा गैर-अवशेष है। इस प्रकार, यदि r ≡ a2 (mod q) द्विघात अवशेष है, यदि a ≡ b है2एक अवशेष है, r ≡ a2 ≡ b4 (mod q) द्विघात अवशेष है, और यदि a गैर-अवशेष है, तो −a अवशेष है, −a ≡ b2, और फिर, r ≡ (−a)2 ≡ b4 (mod q) द्विघात अवशेष है।[9]
इसलिए, एकमात्र रोचक स्तिथि तब है जब मापांक p ≡ 1 (mod 4)।
इस प्रकार से गॉस ने सिद्ध किया है,[10] कि यदि p ≡ 1 (mod 4) तो गैर-शून्य अवशेष वर्ग (mod पी) को चार समुच्चय में विभाजित किया जा सकता है, प्रत्येक में (p−1)/4 संख्याएं होती हैं। मान लीजिए कि e एक द्विघात अअवशेष है। प्रथम समुच्चय चतुर्थक अवशेष है; दूसरा है प्रथम समुच्चय की संख्याओं का e गुना, तीसरा है प्रथम समुच्चय की संख्याओं का e2 गुना और चौथा है प्रथम समुच्चय की संख्याओं का e3 गुना है। इस विभाजन का वर्णन करने का दूसरा विधि यह है कि g को एक आदिम मूल (mod p) मान लिया जाए; तो पहला समुच्चय वे सभी संख्याएँ हैं जिनके सूचकांक इस मूल के संबंध में ≡ 0 (mod 4) हैं, दूसरा समुच्चय वे सभी संख्याएँ हैं जिनके सूचकांक ≡ 1 (mod 4) आदि हैं।[11] समूह सिद्धांत की शब्दावली में, पहला समुच्चय सूचकांक 4 (गुणक समूह Z/pZ× का) का एक उपसमूह है, और अन्य तीन इसके सहसमुच्चय हैं।
प्रथम समुच्चय द्विघात अवशेष है, तीसरा समुच्चय द्विघात अवशेष है जो चतुर्थक अवशेष नहीं हैं, और दूसरा और चौथा समुच्चय द्विघात गैर-अवशेष हैं। गॉस ने प्रमाणित किया कि -1 द्विघात अवशेष है यदि p ≡ 1 (mod 8) और द्विघात है, किन्तु द्विघात नहीं, जब p ≡ 5 (mod 8) है।[12]
2 द्विघात अवशेष mod p है यदि और केवल यदि p ≡ ±1 (mod 8)। चूँकि p भी ≡ 1 (mod 4) है, इसका मतलब है p ≡ 1 (mod 8)। इस प्रकार से प्रत्येक अभाज्य वर्ग और दोगुने वर्ग का योग होता है।
रेफरी> गॉस, डीए आर्ट। 182</ref>
इस प्रकार से गॉस ने सिद्ध किया है,[12]
मान लीजिए q = a2 + 2b2 ≡ 1 (mod 8) अभाज्य संख्या हो। फिर
- 2 द्विघात अवशेष (mod क्यू) है यदि और केवल यदि a ≡ ±1 (mod 8), और
- 2 द्विघात है, किन्तु द्विघात नहीं, अवशेष (mod q) यदि और केवल यदि a ≡ ±3 (mod 8)।
प्रत्येक अभाज्य p ≡ 1 (mod 4) दो वर्गों का योग है।[13] यदि p = a2 + b2 जहां a विषम है और b सम है, गॉस ने प्रमाणित कियाहै,[14]
2 ऊपर परिभाषित प्रथम (क्रमशः दूसरे, तीसरे या चौथे) वर्ग से संबंधित है यदि और केवल यदि b ≡ 0 (सम्मान 2, 4, या 6) (mod 8)। इसका प्रथम स्तिथि यूलर के अनुमानों में से है:
- '2 अभाज्य p ≡ 1 (mod 4) का द्विघात अवशेष है यदि और केवल यदि p = a2 + 64b2.
डिरिचलेट
एक विषम अभाज्य संख्या p और द्विघात अवशेष a (mod p) के लिए, यूलर का मानदंड बताता है कि तो यदि p ≡ 1 (mod 4),,
अभाज्य p ≡ 1 (mod 4) और द्विघात अवशेष a (mod p), के लिए तर्कसंगत चतुर्थक अवशेष प्रतीक को इस प्रकार परिभाषित करें यह सिद्ध करना सरल है कि a द्विघात अवशेष (mod p) है यदि और केवल यदि
डिरिचलेट[15] 2 के द्विघात चरित्र के गॉस के प्रमाण को सरल बनाया (उनके प्रमाण के लिए केवल पूर्णांकों के लिए द्विघात पारस्परिकता की आवश्यकता होती है) और परिणाम को निम्नलिखित रूप में रखा गया:
मान लीजिए p = a2 + b2 ≡ 1 (mod 4) अभाज्य हो, और मान लीजिए i ≡ b/a (mod p)। तब
- (ध्यान दें कि i2 ≡ −1 (mod p).)
वास्तव में,[16] मान लीजिये p = a2 + b2 = c2 + 2d2 = e2 − 2f2 ≡ 1 (mod 8) अभाज्य हो, और मान लीजिये कि a विषम है। तब
- जहाँ साधारण लीजेंड्रे प्रतीक है।
2 के चरित्र से आगे बढ़ते हुए, मान लीजिए कि अभाज्य p = a2 + b2 जहां b सम है, और मान लीजिए कि q अभाज्य है जैसे कि द्विघात पारस्परिकता यह दर्शाया है की जहाँ मान लीजिए σ2 ≡ p (mod q). तब[17]
- यह संकेत करता है[18] तब
इस प्रकार से कुछ उदाहरण हैं:[19]
यूलर ने 2, −3 और 5 के लिए नियमों का अनुमान लगाया था, किन्तु उनमें से किसी को सिद्ध नहीं किया है।
डिरिचलेट[20] यह भी सिद्ध किया कि यदि p ≡ 1 (mod 4) अभाज्य है और तब
ब्राउन और लेहमर द्वारा इसे 17 से बढ़ाकर 17, 73, 97 और 193 कर दिया गया है।[21]
बर्डे
बर्डे के तर्कसंगत द्विघात पारस्परिकता कानून को बताने के अनेक समकक्ष विधि हैं।
वे सभी यह मानते हैं कि p = a2 + b2 और q = c2 + d2 अभाज्य संख्याएँ हैं जहाँ b और d सम हैं, और वह
गॉसमुच्चय का संस्करण है[7]:
मान लीजिए i2 ≡ −1 (mod p) और j2 ≡ −1 (mod q), फ्रोलिच का नियम है[22]
बर्डे ने इस रूप में अपने विचार प्रस्तुत किये है:[23][24][25]
ध्यान दें कि[26]
विविध
मान लीजिए कि p ≡ q ≡ 1 (mod 4) अभाज्य है और मान लीजिए . फिर e2 = p f2 + q g2 में गैर-तुच्छ पूर्णांक समाधान हैं, और[27]
मान लीजिए किp ≡ q ≡ 1 (mod 4) अभाज्य है और मान लीजिए कि p = r2 + q s2 है.तब[28]
माना p = 1 + 4x2अभाज्य हो, मान लीजिए a कोई विषम संख्या है जो x को विभाजित करती है, और मान लीजिए तब[29] जहाँ a* द्विघात अवशेष (mod p) है।
मान लीजिए p = a2 + 4b2 = c2 + 2d2 ≡ 1 (mod 8) अभाज्य है। तब[30] इस प्रकार से सभी विभाजक c4 − p a2 द्विघात अवशेष (mod p) हैं। इस तथ्य के अनुसार d4 − p b2 के सभी विभाजकों के लिए भी सत्य है।.
गाऊसी पूर्णांक
पृष्ठभूमि
द्विघात पारस्परिकता पर अपने दूसरे मोनोग्राफ में गॉस ने कुछ उदाहरण प्रदर्शित किए हैं और अनुमान लगाए हैं जो छोटे अभाज्य संख्याओं के द्विघात चरित्र के लिए ऊपर सूचीबद्ध प्रमेयों का संकेत देते हैं। वह कुछ सामान्य टिप्पणियाँ करता है, और स्वीकार करता है कि कार्य में कोई स्पष्ट सामान्य नियम नहीं दर्शाया गया है।
चूंकि द्विघात अवशेषों पर प्रमेय अधिक उच्च सरलता और वास्तविक छवि के साथ तभी प्रकाशित करते हैं जब अंकगणित का क्षेत्र काल्पनिक संख्याओं तक बढ़ाया जाता है, जिससे बिना किसी प्रतिबंध के a + bi रूप की संख्याएं बन सकें अध्ययन की वस्तु... हम ऐसी संख्याओं को अभिन्न सम्मिश्र संख्याएँ कहते हैं।[31]
इन संख्याओं को अब गॉसियन पूर्णांकों का वलय (गणित) कहा जाता है, जिन्हें Z[i] द्वारा दर्शाया जाता है। ध्यान दें कि i 1 का चौथा मूल है।
एक फ़ुटनोट में वह कहते हैं
घन अवशेषों का सिद्धांत इसी प्रकार a + bh के रूप की संख्याओं के विचार पर आधारित होना चाहिए जहां h समीकरण h का काल्पनिक मूल है जहाँ h3 = 1 ... और इसी प्रकार उच्च शक्तियों के अवशेषों का सिद्धांत अन्य काल्पनिक मात्राओं के परिचय की ओर ले जाता है।[32]
एकता के घनमूल से बनी संख्याओं को अब आइज़ेंस्टीन पूर्णांक का वलय कहा जाता है। उच्च शक्तियों के अवशेषों के सिद्धांत के लिए आवश्यक अन्य काल्पनिक मात्राएँ साइक्लोटोमिक क्षेत्र के पूर्णांकों की रिंग हैं; गॉसियन और आइज़ेंस्टीन पूर्णांक इनके सबसे सरल उदाहरण हैं।
तथ्य और शब्दावली
गॉस ने अभिन्न समष्टि संख्याओं के अंकगणित सिद्धांत को विकसित किया और दिखाया कि यह सामान्य पूर्णांकों के अंकगणित के काफी समान है।[33] यहीं पर इकाई, सहयोगी, मानदंड और प्राथमिक शब्द गणित में पेश किए गए थे।
इकाइयाँ वे संख्याएँ हैं जो 1 को विभाजित करती हैं।[34] वे 1, i, −1, and −i. हैं। वे सामान्य पूर्णांकों में 1 और −1 के समान हैं, जिसमें वे प्रत्येक संख्या को विभाजित करते हैं। इकाइयाँ i की शक्तियाँ हैं।
एक संख्या λ = a + bi, दी गई है, इसका 'संयुग्म' a − bi है और इसके 'सहयोगी' चार संख्याएँ हैं[34]
- λ = +a + bi
- iλ = −b + ai
- −λ = −a − bi
- −iλ = +b − ai
यदि λ = a + bi, तो λ का मान, जिसे Nλ लिखा जाता है, संख्या a2 + b2 . यदि λ और μ दो गाऊसी पूर्णांक हैं, तो Nλμ = Nλ Nμ; दूसरे शब्दों में, मानदंड गुणक है।[34] शून्य का मानदण्ड शून्य होता है, किसी अन्य संख्या का मानदण्ड धनात्मक पूर्णांक होता है। जहाँ ε इकाई है यदि और केवल यदि Nε = 1. λ के मानदंड का वर्गमूल, गैर-नकारात्मक वास्तविक संख्या जो गॉसियन पूर्णांक नहीं हो सकती है, लैम्ब्डा का पूर्ण मान है।
गॉस प्रमाणित करता है कि Z[i] अद्वितीय गुणनखंडन डोमेन है और दिखाता है कि अभाज्य संख्याएँ तीन वर्गों में आती हैं:[35]
- 2 विशेष स्तिथि है: जहाँ 2 = i3 (1 + i)2. यह Z का एकमात्र अभाज्य है जो Z[i] के अभाज्य के वर्ग से विभाज्य है। बीजगणितीय संख्या सिद्धांत में, 2 को Z[i] में विस्तारित कहा जाता है।
- Z ≡ 3 (mod 4) में धनात्मक अभाज्य संख्याएँ Z[i] में भी अभाज्य संख्याएँ हैं। बीजगणितीय संख्या सिद्धांत में, कहा जाता है कि ये अभाज्य संख्याएँ Z[i] में निष्क्रिय रहती हैं।
- Z ≡ 1 (mod 4) में धनात्मक अभाज्य संख्याएँ Z[i] में दो संयुग्मी अभाज्य संख्याओं का गुणनफल हैं। बीजगणितीय संख्या सिद्धांत में, इन अभाज्य संख्याओं को Z[i] में विभाजित करने के लिए कहा जाता है।
इस प्रकार, अक्रिय अभाज्य संख्याएँ 3, 7, 11, 19, ... हैं और विभाजित अभाज्य संख्याओं का गुणनखंडन है
- λ = +a + bi
- iλ = −b + ai
- −λ = −a − bi
- −iλ = +b − ai
अभाज्य के सहयोगी और संयुग्मक भी अभाज्य हैं।
ध्यान दें कि अक्रिय अभाज्य q का मानदंड Nq = q2 ≡ 1 (mod 4) है; इस प्रकार 1 + i और उसके सहयोगियों को छोड़कर सभी अभाज्य अभाज्य संख्याओं का मान ≡ 1 (mod 4) है।
गॉस 'Z'[i] में किसी संख्या को 'विषम' कहते हैं यदि उसका मानदंड विषम पूर्णांक है।[36] इस प्रकार 1 + i और उसके सहयोगियों को छोड़कर सभी अभाज्य संख्याएँ विषम हैं। दो विषम संख्याओं का गुणनफल विषम होता है और विषम संख्या के संयुग्म और सहयोगी विषम होते हैं।
अद्वितीय गुणनखंडन प्रमेय को बताने के लिए, किसी संख्या के सहयोगियों में से किसी को अलग करने का विधि होना आवश्यक है। गॉस परिभाषित करता है[37] विषम संख्या प्राथमिक होगी यदि यह ≡ 1 (mod (1 + i)3) है. यह दिखाना सरल है कि प्रत्येक विषम संख्या का प्राथमिक सहयोगी होता है। विषम संख्या λ = a + bi प्राथमिक है यदि a + b ≡ a − b ≡ 1 (mod 4); यानी, a ≡ 1 और b ≡ 0, या a ≡ 3 और b ≡ 2 (mod 4)।[38] दो प्राथमिक संख्याओं का गुणनफल प्राथमिक होता है और प्राथमिक संख्या का संयुग्मन भी प्राथमिक होता है।
अद्वितीय गुणनखंडन प्रमेय[39] Z[i] के लिए है: यदि λ ≠ 0, तब
जहां 0 ≤ μ ≤ 3, ν ≥ 0, πis प्राथमिक अभाज्य संख्याएँ और αis ≥ 1 हैं, और यह प्रतिनिधित्व कारकों के क्रम तक अद्वितीय है।
सर्वांगसमता संबंध की धारणाएँ[40] और सबसे बड़ा सामान्य भाजक[41] Z[i] में उसी तरह से परिभाषित किया गया है जैसे वे सामान्य पूर्णांक Z के लिए हैं। क्योंकि इकाइयाँ सभी संख्याओं को विभाजित करती हैं, सर्वांगसमता (mod λ) λ के किसी भी सहयोगी और a के किसी भी सहयोगी के लिए भी सच है। जीसीडी भी जीसीडी है.
चतुर्थक अवशेष चरित्र
गॉस फ़र्मेट के छोटे प्रमेय के एनालॉग को प्रमाणित करता है फ़र्मेट का प्रमेय: यदि α विषम अभाज्य π से विभाज्य नहीं है, तब[42]
चूँकि Nπ ≡ 1 (mod 4), समझ में आता है, और अद्वितीय इकाई के लिए ik.
इस इकाई को α (mod π) का 'चतुर्थक' या 'द्विघातीय अवशेष वर्ण' कहा जाता है और इसे इसके द्वारा निरूपित किया जाता है[43][44]
इसमें लीजेंड्रे प्रतीक के समान औपचारिक गुण हैं।[45]
- सर्वांगसमता Z[i] में हल करने योग्य है यदि और केवल यदि[46]
- जहां बार समष्टि संयुग्मन को दर्शाता है।
- यदि π और θ सहयोगी हैं,
- यदि α ≡ β (mod π),
द्विघात वर्ण को सभी में विषम भाज्य संख्याओं तक बढ़ाया जा सकता है, उसी प्रकार लीजेंड्रे प्रतीक को जैकोबी प्रतीक में सामान्यीकृत किया जाता है। उस स्थिति में, यदि सभी मिश्रित है, तो सर्वांगसमता को हल किए बिना प्रतीक के समान हो सकता है:
- जहाँ
- यदि a और b साधारण पूर्णांक हैं, तो a ≠ 0, |b| > 1, जीसीडी(a, b) = 1, फिर[47]
प्रमेय के कथन
गॉस ने द्विघात पारस्परिकता के नियम को इस रूप में बताया:[2][48]
मान लीजिए π और θ Z[i] के अलग-अलग प्राथमिक अभाज्य हैं। तब
- यदि या तो π या θ या दोनों ≡ 1 (mod 4) हैं, तो किन्तु
- यदि π और θ दोनों ≡ 3 + 2i (mod 4) हैं, तो
जिस प्रकार लीजेंड्रे प्रतीक के लिए द्विघात पारस्परिकता कानून जैकोबी प्रतीक के लिए भी सत्य है, संख्याओं के अभाज्य होने की आवश्यकता नहीं है; यह पर्याप्त है कि वे विषम अपेक्षाकृत अभाज्य गैर-इकाइयाँ हों।[49] संभवतः अधिक प्रसिद्ध कथन है:
मान लीजिए π और θ प्राथमिक अपेक्षाकृत अभाज्य गैरइकाइयाँ हैं। तब[50]
पूरक प्रमेय हैं[51][52] इकाइयों और अर्ध-सम अभाज्य 1 + i के लिए।
यदि π = a + bi प्राथमिक अभाज्य है, तब
और इस प्रकार
इसके अतिरिक्त, यदि π = a + bi प्राथमिक अभाज्य है, और b ≠ 0 है तो[53]
- (यदि b = 0 तो प्रतीक 0 है)।
जैकोबी ने π = a + bi को प्राथमिक माना यदि a ≡ 1 (mod 4)। इस सामान्यीकरण के साथ, कानून आकार लेता है[54]
मान लीजिए α = a + bi और β = c + di जहां a ≡ c ≡ 1 (mod 4) और b और d अपेक्षाकृत अभाज्य गैर-इकाइयाँ भी हैं। तब
निम्नलिखित संस्करण गॉस की अप्रकाशित पांडुलिपियों में पाया गया था।[55]
मान लीजिए α = a + 2bi और β = c + 2di जहां a और c विषम हैं, वे अपेक्षाकृत अभाज्य गैर-इकाइयाँ हैं। तब
कानून को प्राथमिक की अवधारणा का उपयोग किए बिना कहा जा सकता है:
यदि λ विषम है, तो मान लें कि ε(λ) λ के सर्वांगसम अद्वितीय इकाई है (mod (1 + i)3); अर्थात, ε(λ) = ik ≡ λ (mod 2 + 2i), जहां 0 ≤ k ≤ 3. फिर[56] विषम और अपेक्षाकृत अभाज्य α और β के लिए, कोई भी इकाई नहीं है,
विषम λ के लिए, चलो फिर यदि λ और μ अपेक्षाकृत अभाज्य गैर-इकाइयाँ हैं, तो आइज़ेंस्टीन ने सिद्ध किया[57]
यह भी देखें
- द्विघात पारस्परिकता
- घन पारस्परिकता
- ऑक्टिक पारस्परिकता
- आइसेनस्टीन पारस्परिकता
- आर्टिन पारस्परिकता
टिप्पणियाँ
- A.^ Here, "rational" means laws that are stated in terms of ordinary integers rather than in terms of the integers of some algebraic number field.
संदर्भ
- ↑ Euler, Tractatus, § 456
- ↑ 2.0 2.1 गॉस, बीक्यू, § 67
- ↑ Eisenstein, Einfacher Beweis ...
- ↑ Eisenstein, Application de l'algebre ...
- ↑ Eisenstein, Beitrage zur Theorie der elliptischen ...
- ↑ Lemmermeyer, pp. 199–202
- ↑ 7.0 7.1 Lemmermeyer, p. 172
- ↑ 8.0 8.1 Gauss, BQ § 2
- ↑ Gauss, BQ § 3
- ↑ Gauss, BQ §§ 4–7
- ↑ Gauss, BQ § 8
- ↑ 12.0 12.1 गॉस, बीक्यू § 10
- ↑ Gauss, DA, Art. 182
- ↑ Gauss BQ §§ 14–21
- ↑ Dirichlet, Demonstration ...
- ↑ Lemmermeyer, Prop. 5.4
- ↑ Lemmermeyer, Prop. 5.5
- ↑ Lemmermeyer, Ex. 5.6
- ↑ Lemmmermeyer, pp.159, 190
- ↑ Dirichlet, Untersuchungen ...
- ↑ Lemmermeyer, Ex. 5.19
- ↑ Lemmermeyer, p. 173
- ↑ Lemmermeyer, p. 167
- ↑ Ireland & Rosen pp.128–130
- ↑ Burde, K. (1969). "Ein rationales biquadratisches Reziprozitätsgesetz". J. Reine Angew. Math. (in German). 235: 175–184. Zbl 0169.36902.
{{cite journal}}
: CS1 maint: unrecognized language (link) - ↑ Lemmermeyer, Ex. 5.13
- ↑ Lemmermeyer, Ex. 5.5
- ↑ Lemmermeyer, Ex. 5.6, credited to Brown
- ↑ Lemmermeyer, Ex. 6.5, credited to Sharifi
- ↑ Lemmermeyer, Ex. 6.11, credited to E. Lehmer
- ↑ Gauss, BQ, § 30, translation in Cox, p. 83
- ↑ Gauss, BQ, § 30, translation in Cox, p. 84
- ↑ Gauss, BQ, §§ 30–55
- ↑ 34.0 34.1 34.2 गॉस, बीक्यू, § 31
- ↑ Gauss, BQ, §§ 33–34
- ↑ Gauss, BQ, § 35. He defines "halfeven" numbers as those divisible by 1 + i but not by 2, and "even" numbers as those divisible by 2.
- ↑ Gauss, BQ, § 36
- ↑ Ireland & Rosen, Ch. 9.7
- ↑ Gauss, BQ, § 37
- ↑ Gauss, BQ, §§ 38–45
- ↑ Gauss, BQ, §§ 46–47
- ↑ Gauss, BQ, § 51
- ↑ Gauss defined the character as the exponent k rather than the unit ik; also, he had no symbol for the character.
- ↑ There is no standard notation for higher residue characters in different domains (see Lemmermeyer, p. xiv); this article follows Lemmermeyer, chs. 5–6
- ↑ Ireland & Rosen, Prop 9.8.3
- ↑ Gauss, BQ, § 61
- ↑ Ireland & Rosen, Prop. 9.8.3, Lemmermeyer, Prop 6.8
- ↑ proofs are in Lemmermeyer, chs. 6 and 8, Ireland & Rosen, ch. 9.7–9.10
- ↑ Lemmermeyer, Th. 69.
- ↑ Lemmermeyer, ch. 6, Ireland & Rosen ch. 9.7–9.10
- ↑ Lemmermeyer, Th. 6.9; Ireland & Rosen, Ex. 9.32–9.37
- ↑ Gauss proves the law for 1 + i in BQ, §§ 68–76
- ↑ Ireland & Rosen, Ex. 9.30; Lemmermeyer, Ex. 6.6, where Jacobi is credited
- ↑ Lemmermeyer, Th. 6.9
- ↑ Lemmermeyer, Ex. 6.17
- ↑ Lemmermeyer, Ex. 6.18 and p. 275
- ↑ Lemmermeyer, Ch. 8.4, Ex. 8.19
साहित्य
यूलर, डिरिचलेट और ईसेनस्टीन के मूल पत्रों के संदर्भ लेमरमेयर और कॉक्स की ग्रंथ सूची से कॉपी किए गए थे, और इस लेख की तैयारी में उनका उपयोग नहीं किया गया था।
यूलर
- Euler, Leonhard (1849), Tractatus de numeroroum doctrina capita sedecim quae supersunt, Comment. Arithmet. 2
यह वास्तव में 1748-1750 में लिखा गया था, किन्तु केवल मरणोपरांत प्रकाशित किया गया था; यह खंड V, पृष्ठ 182-283 में है
- Euler, Leonhard (1911–1944), Opera Omnia, Series prima, Vols I–V, Leipzig & Berlin: Teubner
गॉस
द्विघात पारस्परिकता पर गॉस द्वारा प्रकाशित दो मोनोग्राफ में लगातार क्रमांकित खंड हैं: पहले में §§ 1-23 और दूसरे में §§ 24-76 हैं। इन्हें संदर्भित करने वाले फ़ुटनोट गॉस, बीक्यू, § एन के रूप में हैं। डिस्क्विज़िशन अरिथमेटिके को संदर्भित करने वाले फ़ुटनोट गॉस, डीए, आर्ट के रूप में हैं। एन ।
- Gauss, Carl Friedrich (1828), Theoria residuorum biquadraticorum, Commentatio prima, Göttingen: Comment. Soc. regiae sci, Göttingen 6
- Gauss, Carl Friedrich (1832), Theoria residuorum biquadraticorum, Commentatio secunda, Göttingen: Comment. Soc. regiae sci, Göttingen 7 }
ये गॉस वर्क, खंड II, पृष्ठ 107-1 में हैं 65-92 और 93-148
जर्मन अनुवाद पीपी में हैं। निम्नलिखित अध्याय के 511-533 और 534-586, जिसमें संख्या सिद्धांत पर अंकगणितीय विवेचन और गॉस के अन्य पेपर भी शामिल हैं।
- Gauss, Carl Friedrich; Maser, H. (translator into German) (1965), Untersuchungen uber hohere Arithmetik (Disquisitiones Arithmeticae & other papers on number theory) (Second edition), New York: Chelsea, ISBN 0-8284-0191-8
{{citation}}
:|first2=
has generic name (help)
आइसेनस्टीन
- Eisenstein, Ferdinand Gotthold (1844), "Lois de réciprocité", Journal für die reine und angewandte Mathematik (Crelle's Journal), J. Reine Angew. Math. 28, pp. 53–67 (Crelle's Journal), 1844 (28): 53–67, doi:10.1515/crll.1844.28.53, S2CID 120713971
- Eisenstein, Ferdinand Gotthold (1844), Einfacher Beweis und Verallgemeinerung des Fundamentaltheorems für die biquadratischen Reste, J. Reine Angew. Math. 28 pp. 223–245 (Crelle's Journal)
- Eisenstein, Ferdinand Gotthold (1845), Application de l'algèbre à l'arithmétique transcendante, J. Reine Angew. Math. 29 pp. 177–184 (Crelle's Journal)
- Eisenstein, Ferdinand Gotthold (1846), Beiträge zur Theorie der elliptischen Funktionen I: Ableitung des biquadratischen Fundalmentaltheorems aus der Theorie der Lemniskatenfunctionen, nebst Bemerkungen zu den Multiplications- und Transformationsformeln, J. Reine Angew. Math. 30 pp. 185–210 (Crelle's Journal)
ये सभी कागजात उनके वर्के के खंड I में हैं।
डिरिचलेट
- Dirichlet, Pierre Gustave LeJeune (1832), Démonstration d'une propriété analogue à la loi de Réciprocité qui existe entre deux nombres premiers quelconques, J. Reine Angew. Math. 9 pp. 379–389 (Crelle's Journal)
- Dirichlet, Pierre Gustave LeJeune (1833), Untersuchungen über die Theorie der quadratischen Formen, Abh. Königl. Preuss. Akad. Wiss. pp. 101–121
ये दोनों उनके वर्के के खंड I में हैं।
आधुनिक लेखक
- Cox, David A. (1989), Primes of the form x2 + n y2, New York: Wiley, ISBN 0-471-50654-0
- Ireland, Kenneth; Rosen, Michael (1990), A Classical Introduction to Modern Number Theory (Second edition), New York: Springer, ISBN 0-387-97329-X
- Lemmermeyer, Franz (2000), Reciprocity Laws: from Euler to Eisenstein, Springer Monographs in Mathematics, Berlin: Springer, doi:10.1007/978-3-662-12893-0, ISBN 3-540-66957-4
बाहरी संबंध
These two papers by Franz Lemmermeyer contain proofs of Burde's law and related results: