वक्र का अव्युत्क्रमणीय बिंदु

From Vigyanwiki
Revision as of 12:43, 23 July 2023 by alpha>DIPAKKK

ज्यामिति में, वक्र पर एक विलक्षण बिंदु वह होता है जहां वक्र को पैरामीट्रिज़ेशन (ज्यामिति) के सुचारू फलन एम्बेडिंग द्वारा नहीं दिया जाता है। एकवचन बिंदु की स्पष्ट परिभाषा अध्ययन किए जा रहे वक्र के प्रकार पर निर्भर करती है।

तल में बीजगणितीय वक्र

समतल में बीजगणितीय वक्रों को बिंदुओं (x, y) के समुच्चय के रूप में परिभाषित किया जा सकता है जो रूप के समीकरण को संतुष्ट करता है जहां f एक बहुपद फलन है यदि f को इस प्रकार विस्तारित किया जाता है

यदि मूल बिंदु (0, 0) वक्र पर है तो a0 = 0. यदि b1 ≠ 0 है तो अंतर्निहित फलन प्रमेय आश्वासन देता है कि एक सुचारू फलन h है जिससे वक्र का रूप मूल के निकट y = h(x) हो। इसी प्रकार, यदि b0 ≠ 0 है तो एक सहज फलन k है जिससे मूल बिंदु के निकट वक्र का रूप x = k(y) हो। किसी भी स्थिति में से समतल तक एक सहज मानचित्र है जो मूल बिंदु के निकट में वक्र को परिभाषित करता है। ध्यान दें कि मूल पर
इसलिए यदि f का कम से कम एक आंशिक व्युत्पन्न गैर-शून्य है तो वक्र मूल बिंदु पर गैर-एकवचन या नियमित है। एकवचन बिंदु वक्र पर वे बिंदु हैं जहां दोनों आंशिक व्युत्पन्न विलुप्त हो जाते हैं,


नियमित अंक

मान लीजिए कि वक्र मूल बिन्दु से होकर गुजरता है और लिखिए तब f लिखा जा सकता है

यदि 0 नहीं है तो x = 0 पर f = 0 का बहुलता 1 का हल है और मूल बिंदु रेखा के साथ एकल संपर्क का एक बिंदु है यदि } है तो f = 0 का बहुलता 2 या उच्चतर का हल है और रेखा या वक्र की स्पर्शरेखा है। इस स्थिति में, यदि 0 नहीं है तो वक्र का के साथ दोहरा संपर्क बिंदु है यदि x2, का गुणांक 0 है किंतु x3 का गुणांक नहीं है तो मूल बिंदु वक्र का विभक्ति बिंदु है। यदि x2 और x3 दोनों के गुणांक 0 हैं तो मूल बिंदु को वक्र का उतार-चढ़ाव बिंदु कहा जाता है। इस विश्लेषण को निर्देशांक अक्षों का अनुवाद करके वक्र के किसी भी बिंदु पर प्रयुक्त किया जा सकता है जिससे मूल बिंदु दिए गए बिंदु पर हो।[1]

दोगुने अंक

दोहरे बिंदु के प्रकारों को दर्शाने वाले तीन लिमाकॉन। जब कार्टेशियन निर्देशांक में परिवर्तित किया जाता है जो की बायां वक्र मूल बिंदु पर एक एकनोड प्राप्त करता है, जो तल में एक पृथक बिंदु है। केंद्रीय वक्र, कारडायोड , के मूल में एक पुच्छल होता है। दाएं वक्र के मूल में एक क्रूनोड है और वक्र एक लूप बनाने के लिए खुद को पार करता है।


यदि उपरोक्त विस्तार में b0 और b1 दोनों 0 हैं, किंतु c0, c1, c2 में से कम से कम एक 0 नहीं है, तो मूल बिंदु को वक्र का दोहरा बिंदु कहा जाता है। पुनः डालकर f लिखा जा सकता है

दोहरे बिंदुओं को समाधान के अनुसार वर्गीकृत किया जा सकता है


क्रूनोड्स

यदि के पास m के लिए दो वास्तविक समाधान हैं, अथार्त यदि तो मूल बिंदु को क्रूनोड कहा जाता है। इस स्थिति में वक्र मूल बिंदु पर स्वयं को काटता है और के दो समाधानों के अनुरूप दो अलग-अलग स्पर्शरेखाएं होती हैं। इस स्थिति में फलन f के मूल बिंदु पर एक सैडल बिंदु होता है।

एक्नोड्स

यदि के पास m के लिए दो वास्तविक समाधान हैं, अर्थात यदि तो मूल को एक्नोड्स कहा जाता है। वास्तविक तल में मूल बिंदु वक्र पर एक पृथक बिंदु है; चूँकि जब एक जटिल वक्र के रूप में माना जाता है तो मूल को अलग नहीं किया जाता है और दो जटिल समाधानों के अनुरूप दो काल्पनिक स्पर्शरेखाएँ होती हैं फलन f इस स्थिति में मूल में मैक्सिमा और मिनिमा है।

कस्प्स

यदि में m के लिए बहुलता 2 का एक ही समाधान है, अर्थात यदि है तो मूल को पुच्छल कहा जाता है। इस मामले में वक्र एक तीव्र बिंदु बनाते हुए मूल बिंदु पर दिशा बदलता है। वक्र के मूल में एक ही स्पर्शरेखा होती है जिसे दो संपाती स्पर्शरेखाएँ माना जा सकता है।

आगे का वर्गीकरण

नोड शब्द का उपयोग क्रूनोड या एक्नोड को निरुपित करने के लिए किया जाता है, दूसरे शब्दों में एक दोहरा बिंदु जो एक पुच्छल नहीं है। नोड्स की संख्या और वक्र पर क्यूस्प्स की संख्या प्लुकर सूत्रों में उपयोग किए जाने वाले दो अपरिवर्तनीय हैं।

यदि का एक समाधान का भी समाधान है तो वक्र की संबंधित शाखा के मूल में एक विभक्ति बिंदु होता है। इस स्थिति में मूल को फ़्लेक्नोड कहा जाता है। यदि दोनों स्पर्शरेखाओं में यह गुण है, इसलिए का एक कारक है तो मूल बिंदु को बाइफ्लेक्नोड कहा जाता है।[2]

एकाधिक अंक

मूल बिंदु पर त्रिक बिंदु वाला एक वक्र: x(t) = sin(2t) + cos(t), y(t) = sin(t) + cos(2t)

सामान्यतः, यदि k से कम डिग्री के सभी पद 0 हैं, और डिग्री k का कम से कम एक पद f में 0 नहीं है, तो वक्र को क्रम k या k-ple बिंदु के एकाधिक बिंदु वाला कहा जाता है। सामान्यतः, वक्र के मूल में k स्पर्शरेखाएँ होंगी, चूँकि इनमें से कुछ स्पर्शरेखाएँ काल्पनिक हो सकती हैं।[3]

पैरामीट्रिक वक्र

में एक पैरामीटरयुक्त वक्र को फलन की छवि के रूप में परिभाषित किया गया है एकवचन बिंदु वे बिंदु हैं जहां

अर्धघनाकार परवलय में एक पुच्छल


कई वक्रों को किसी भी प्रकार से परिभाषित किया जा सकता है, किंतु हो सकता है कि दोनों परिभाषाएँ सहमत न हों। उदाहरण के लिए, पुच्छ को बीजगणितीय वक्र पर परिभाषित किया जा सकता है, या पैरामीट्रिज्ड वक्र पर, दोनों परिभाषाएँ मूल पर एक विलक्षण बिंदु देती हैं। चूँकि , मूल में जैसा नोड एक बीजगणितीय वक्र के रूप में माने जाने वाले वक्र की एक विलक्षणता है, किंतु यदि हम इसे के रूप में पैरामीटराइज़ करते हैं तो कभी विलुप्त नहीं होता है, और इसलिए नोड ऊपर बताए अनुसार पैरामीटरयुक्त वक्र की एक विलक्षणता नहीं है।


पैरामीटराइजेशन चुनते समय सावधानी बरतने की जरूरत है। उदाहरण के लिए सीधी रेखा y = 0 को द्वारा पैरामीटराइज़ किया जा सकता है जिसके मूल में एक विलक्षणता है। जब द्वारा पैरामीट्रिज किया जाता है तो यह एकवचन नहीं होता है। इसलिए, यहां किसी वक्र के एकवचन बिंदु के अतिरिक्त एक सहज मानचित्रण के एकवचन बिंदुओं पर चर्चा करना तकनीकी रूप से अधिक सही है।

उपरोक्त परिभाषाओं को अंतर्निहित वक्रों को कवर करने के लिए बढ़ाया जा सकता है जिन्हें एक सुचारू फलन के शून्य सेट के रूप में परिभाषित किया गया है, और केवल बीजगणितीय विविध पर विचार करना आवश्यक नहीं है। उच्च आयामों में वक्रों को कवर करने के लिए परिभाषाओं को बढ़ाया जा सकता है।

हस्लर व्हिटनी का एक प्रमेय[4][5]] बताता है

Theorem —  Any closed set in occurs as the solution set of for some smooth function

किसी भी पैरामीटरयुक्त वक्र को एक अंतर्निहित वक्र के रूप में भी परिभाषित किया जा सकता है, और वक्रों के एकवचन बिंदुओं के वर्गीकरण का अध्ययन बीजगणितीय विविधता के एकवचन बिंदु के वर्गीकरण के रूप में किया जा सकता है।

एकवचन बिंदुओं के प्रकार

कुछ संभावित विलक्षणताएँ हैं:

  • एक पृथक बिंदु: एक एनोड
  • दो रेखाएं प्रतिच्छेद करती हैं: एक क्रुनोड
  • एक पुच्छ (विलक्षणता): इसे स्पिनोड भी कहा जाता है
  • एक टैकनोड:
  • एक रैम्फॉइड पुच्छल:


यह भी देखें

संदर्भ

  1. Hilton Chapter II §1
  2. Hilton Chapter II §2
  3. Hilton Chapter II §3
  4. Th. Bröcker, Differentiable Germs and Catastrophes, London Mathematical Society. Lecture Notes 17. Cambridge, (1975)
  5. Bruce and Giblin, Curves and singularities, (1984, 1992) ISBN 0-521-41985-9, ISBN 0-521-42999-4 (paperback)