विकल्प फलन
एक पसंद समारोह (चयनकर्ता, चयन) एक गणितीय समारोह f है जिसे अरिक्त समुच्चय (गणित) के कुछ संग्रह X पर परिभाषित किया गया है और उस संग्रह में प्रत्येक समुच्चय S के कुछ तत्व को नियुक्त करता है एस बाय एफ(एस); f(S) S को S के कुछ तत्वों से मैप करता है। दूसरे शब्दों में, f X के लिए एक पसंद समारोह है यदि और केवल यदि यह X के प्रत्यक्ष उत्पाद से संबंधित है।
एक उदाहरण
मान लीजिए X= { {1,4,7}, {9}, {2,7} }। फिर वह फलन जो समुच्चय {1,4,7} को 7, {9} को 9, और {2,7} को 2 निर्दिष्ट करता है, X पर एक विकल्प फलन है।
इतिहास और महत्व
अर्नेस्ट ज़र्मेलो (1904) ने पसंद समारोह के साथ-साथ पसंद के स्वयंसिद्ध (एसी ) की शुरुआत की और सुव्यवस्थित प्रमेय को सिद्ध किया,[1] जिसमें कहा गया है कि प्रत्येक समुच्चय सुव्यवस्थित हो सकता है | एसी बताता है कि अरिक्त समुच्चयों के प्रत्येक समुच्चय में एक विकल्प कार्य होता है। एसी का एक कमजोर रूप, गणनीय पसंद का स्वयंसिद्ध (एसीω) बताता है कि अरिक्त समुच्चयों के प्रत्येक गणनीय समुच्चय में एक विकल्प कार्य होता है। हालांकि, एसी या एसीω की अनुपस्थिति में, कुछ समुच्चयों को अभी भी एक पसंद समारोह के रूप में दिखाया जा सकता है।
- अगर अरिक्त समुच्चयों का एक सीमित समुच्चय समुच्चय है, तो कोई इसके लिए एक विकल्प समारोह बना सकता है के प्रत्येक सदस्य से एक तत्व चुनकर इसके लिए केवल बहुत से विकल्पों की आवश्यकता होती है, इसलिए न तो एसी या एसीω ज़रूरी है।
- यदि प्रत्येक सदस्य एक अरिक्त समुच्चय है, और संघ (समुच्चय सिद्धांत) सुव्यवस्थित है, तो कोई भी प्रत्येक सदस्य के कम से कम तत्व को चुन सकता है . इस मामले में, प्रत्येक सदस्य को एक साथ अच्छी तरह से आदेश देना संभव था संघ के एक सुव्यवस्था का सिर्फ एक विकल्प बनाकर, इसलिए न तो एसी और न ही एसीω चाहिए था। (इस उदाहरण से पता चलता है कि सुक्रम प्रमेय एसी का तात्पर्य है। विपरीत (तर्क) भी सत्य है, लेकिन कम तुच्छ है।)
बहु-मूल्यांकित मानचित्र का चयन समारोह
दो समुच्चय X और Y दिए गए हैं, मान लीजिए कि F, X से Y तक एक बहुमूल्यांकित फलन है (समकक्ष रूप से, X से Y के सत्ता स्थापित का एक समारोह है)।
एक समारोह 'एफ' का चयन कहा जाता है, यदि:
बोरबाकी ताऊ समारोह
निकोलस बोरबाकी ने अपने प्रतिष्ठान के लिए एप्सिलॉन गणना को प्रयुक्त किया जिसमें a प्रतीक जिसे एक वस्तु (यदि कोई अस्तित्व में है) चुनने के रूप में व्याख्या किया जा सकता है जो किसी दिए गए प्रस्ताव को संतुष्ट करता है। तो यदि एक विधेय है, तो एक विशेष वस्तु है जो संतुष्ट करती है (यदि कोई मौजूद है, अन्यथा यह एक मनमाना वस्तु लौटाता है)। इसलिए हम पसंद समारोह से परिमाण कों प्राप्त कर सकते हैं, उदाहरण के लिए के बराबर था .[3]
हालाँकि, बोरबाकी का पसंद प्रचालक सामान्य से अधिक मजबूत है: यह एक वैश्विक पसंद प्रचालक है। अर्थात्, यह वैश्विक पसंद के स्वयंसिद्ध को दर्शाता है।[4] एप्सिलॉन गणना की शुरुआत करते समय हिल्बर्ट को इसका एहसास हुआ।[5]
यह भी देखें
- गणनीय पसंद का स्वयंसिद्ध
- आश्रित पसंद का स्वयंसिद्ध
- हॉसडॉर्फ विरोधाभास
- अर्ध निरंतरता
टिप्पणियाँ
- ↑ Zermelo, Ernst (1904). "सबूत है कि किसी भी सेट को अच्छी तरह से ऑर्डर किया जा सकता है". Mathematische Annalen. 59 (4): 514–16. doi:10.1007/BF01445300.
- ↑ Border, Kim C. (1989). Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press. ISBN 0-521-26564-9.
- ↑ Bourbaki, Nicolas. Elements of Mathematics: Theory of Sets. ISBN 0-201-00634-0.
- ↑ John Harrison, "The Bourbaki View" eprint.
- ↑ "Here, moreover, we come upon a very remarkable circumstance, namely, that all of these transfinite axioms are derivable from a single axiom, one that also contains the core of one of the most attacked axioms in the literature of mathematics, namely, the axiom of choice: , where is the transfinite logical choice function." Hilbert (1925), “On the Infinite”, excerpted in Jean van Heijenoort, From Frege to Gödel, p. 382. From nCatLab.
संदर्भ
This article incorporates material from Choice function on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.