भू-संदर्भ
भू-संदर्भ या भू-पंजीकरण एक प्रकार का समन्वय परिवर्तन है जो एक डिजिटल रैस्टर छवि या वेक्टर डेटाबेस को बांधता है जो एक भौगोलिक स्थान (आमतौर पर एक स्कैन किया गया नक्शा या हवाई तस्वीर) को एक स्थानिक संदर्भ प्रणाली में दर्शाता है, इस प्रकार वास्तविक दुनिया में डिजिटल डेटा का पता लगाता है।[1][2] इस प्रकार यह छवि पंजीकरण का भौगोलिक रूप है। यह शब्द परिवर्तन करने के लिए उपयोग किए जाने वाले गणितीय सूत्रों, परिवर्तन को निर्दिष्ट करने के लिए साइडकार फ़ाइल के साथ या उसके भीतर संग्रहीत भू-स्थानिक मेटाडेटा, या ऐसे मेटाडेटा बनाने के लिए छवि को वास्तविक दुनिया में मैन्युअल रूप से या स्वचालित रूप से संरेखित करने की प्रक्रिया को संदर्भित कर सकता है। सबसे आम परिणाम यह है कि छवि को भौगोलिक सूचना प्रणालियों और रिमोट सेंसिंग सॉफ़्टवेयर में अन्य भौगोलिक डेटा के साथ दृश्यमान और विश्लेषणात्मक रूप से एकीकृत किया जा सकता है।
कई गणितीय विधियाँ उपलब्ध हैं, लेकिन इस प्रक्रिया में आम तौर पर छवि और जमीन पर ज्ञात स्थानों के साथ कई नमूना ग्राउंड नियंत्रण बिंदुओं की पहचान करना शामिल है, फिर शेष छवि को बदलने के लिए एक पैरामीट्रिक (या टुकड़ावार पैरामीट्रिक) सूत्र उत्पन्न करने के लिए वक्र फिटिंग तकनीकों का उपयोग करना।[3] एक बार जब सूत्र के पैरामीटर संग्रहीत हो जाते हैं, तो छवि को ड्राइंग के समय गतिशील रूप से रूपांतरित किया जा सकता है, या एक भू-संदर्भित रेखापुंज जीआईएस फ़ाइल या ऑर्थोफ़ोटो उत्पन्न करने के लिए पुन: प्रारूप किया जा सकता है।
जियोरेफ़रेंसिंग शब्द का उपयोग भौगोलिक स्थान (जियोकोड) की सामान्य अभिव्यक्तियों से लेकर माप के समन्वय तक अन्य प्रकार के परिवर्तनों को संदर्भित करने के लिए भी किया गया है,[4] लेकिन इनमें से अधिकांश अन्य तरीकों को आमतौर पर जियोकोडिंग कहा जाता है। इस अस्पष्टता के कारण, कुछ लोगों द्वारा छवि परिवर्तन को संदर्भित करने के लिए जियोरजिस्ट्रेशन को प्राथमिकता दी जाती है।[5]: 141–143 कभी-कभी, इस प्रक्रिया को रबर शीटिंग कहा जाता है, लेकिन यह शब्द आमतौर पर वेक्टर जीआईएस डेटा पर लागू होने वाली समान प्रक्रिया पर लागू होता है।[5]: 240
प्रेरणा
- हवाई इमेजरी और उपग्रह इमेजरी, आमतौर पर रेखापुंज छवियां, मैपिंग के लिए उपयोगी बनाने के लिए जियोरेफ़रेंसिंग महत्वपूर्ण है क्योंकि यह बताता है कि अन्य डेटा, जैसे कि उपरोक्त GPS बिंदु, इमेजरी से कैसे संबंधित हैं।
- अत्यंत आवश्यक जानकारी उन डेटा या छवियों में निहित हो सकती है जो किसी भिन्न समय पर निर्मित किए गए थे। इस डेटा को वर्तमान में उपलब्ध डेटा के साथ संयोजित करना या तुलना करना वांछित हो सकता है। उत्तरार्द्ध का उपयोग समय की अवधि में अध्ययन के तहत सुविधाओं में परिवर्तनों का विश्लेषण करने के लिए किया जा सकता है।
- अलग-अलग मानचित्र अलग-अलग प्रक्षेपण प्रणालियों का उपयोग कर सकते हैं। जियोरेफ़रेंसिंग टूल में इन मानचित्रों को न्यूनतम विरूपण के साथ संयोजित और ओवरले करने की विधियाँ शामिल हैं।
गणित
एक भौगोलिक स्थान पर एक छवि का पंजीकरण अनिवार्य रूप से एक इनपुट समन्वय प्रणाली (पंक्ति और स्तंभ संख्या के आधार पर छवियों में पिक्सेल के अंतर्निहित निर्देशांक) से एक आउटपुट समन्वय प्रणाली, उपयोगकर्ता की पसंद की एक स्थानिक संदर्भ प्रणाली में परिवर्तन है, जैसे भौगोलिक समन्वय प्रणाली या एक विशेष यूनिवर्सल ट्रांसवर्स मरकेटर ज़ोन के रूप में। इस प्रकार यह दो चरों से चार आयामों के बीच संबंध को फिट करने वाले वक्र के विशिष्ट कार्य का विस्तार है। लक्ष्य प्रपत्र के कार्यों की एक जोड़ी रखना है:
ऐसा कि छवि में प्रत्येक पिक्सेल के लिए ( क्रमशः इसका स्तंभ और पंक्ति संख्या होने के कारण), संबंधित वास्तविक-विश्व समन्वय की गणना की जा सकती है।
जियोरेफरेंसिंग के लिए अधिकांश जीआईएस और रिमोट सेंसिंग सॉफ्टवेयर में कई प्रकार के फ़ंक्शन उपलब्ध हैं।[6] चूंकि द्वि-आयामी वक्र का सबसे सरल प्रकार एक सीधी रेखा है, इसलिए समन्वय परिवर्तन का सबसे सरल रूप एक रैखिक परिवर्तन है, सबसे सामान्य प्रकार एफ़िन परिवर्तन है:[7]: 171
जहां A-F संपूर्ण छवि के लिए निर्धारित स्थिर गुणांक हैं। ये सूत्र एक छवि को स्थानांतरित करने की अनुमति देते हैं (सी और एफ गुणांक छवि के ऊपरी बाएं कोने का वांछित स्थान निर्दिष्ट करते हैं), स्केल किया जाता है (रोटेशन के बिना, ए और ई गुणांक प्रत्येक सेल या स्थानिक रिज़ॉल्यूशन का आकार निर्दिष्ट करते हैं), और घुमाया गया.[8]: 115 अंतिम स्थिति में, यदि सेल का आकार x और y दोनों दिशाओं में r है, और छवि को α डिग्री वामावर्त घुमाया जाना है, तो . Esri द्वारा विकसित विश्व फ़ाइल आमतौर पर उपयोग की जाने वाली साइडकार फ़ाइल है जो छवि जियोरेफ़रेंसिंग के लिए इन छह गुणांकों को निर्दिष्ट करती है।
उच्च क्रम के बहुपद परिवर्तनों का भी आमतौर पर उपयोग किया जाता है। उदाहरण के लिए, दूसरे क्रम का बहुपद परिवर्तन होगा:
दूसरे क्रम के शब्द (और तीसरे क्रम के बहुपद में तीसरे क्रम के शब्द) छवि के परिवर्तनशील विरूपण की अनुमति देते हैं, जो हवाई तस्वीरों में अंतर्निहित विरूपण (प्रकाशिकी) को हटाने के लिए विशेष रूप से उपयोगी है।
वैश्विक पैरामीट्रिक सूत्रों के अलावा, टुकड़े-टुकड़े सूत्रों का भी उपयोग किया जा सकता है, जो छवि के विभिन्न हिस्सों को अलग-अलग तरीकों से बदलते हैं। एक सामान्य उदाहरण पतली प्लेट तख़्ता परिवर्तन है।[9]
जीसीपी विधि
यह बहुत दुर्लभ है कि कोई उपयोगकर्ता सीधे परिवर्तन के लिए पैरामीटर निर्दिष्ट करेगा। इसके बजाय, अधिकांश भौगोलिक सूचना प्रणाली और रिमोट सेंसिंग सॉफ़्टवेयर छवि को गंतव्य समन्वय प्रणाली में दृष्टिगत रूप से संरेखित करने के लिए एक इंटरैक्टिव वातावरण प्रदान करते हैं। ऐसा करने का सबसे आम तरीका ग्राउंड कंट्रोल पॉइंट्स (जीसीपी) की एक श्रृंखला बनाना है।[7]: 170 ग्राउंड कंट्रोल प्वाइंट एक ऐसा स्थान है जिसे छवि और जमीन दोनों पर पहचाना जा सकता है, ताकि छवि समन्वय प्रणाली दोनों में इसका सटीक निर्देशांक हो ( = पिक्सेल कॉलम, = पिक्सेल पंक्ति) और ग्राउंड समन्वय प्रणाली (). आसानी से दिखाई देने वाले स्थान जो सटीक रूप से स्थित हों, उन्हें जीसीपी के रूप में प्राथमिकता दी जाती है, जैसे सड़क चौराहा या किसी इमारत का कोना। जब बहुत उच्च सटीकता पंजीकरण की आवश्यकता होती है, तो फोटोग्राफी लेने से पहले सर्वेक्षण नियंत्रण स्मारकों पर जमीन पर उच्च-कंट्रास्ट मार्कर लगाना या पेंट करना और आउटपुट के लिए जीएनएसएस-मापा निर्देशांक का उपयोग करना आम बात है। अधिकांश सॉफ़्टवेयर में, इन्हें छवि पर स्थान को इंगित करके दर्ज किया जाता है, फिर वेक्टर बेस मैप या ऑर्थोफोटो पर उसी स्थान पर इंगित किया जाता है जो पहले से ही वांछित समन्वय प्रणाली में है। फिर सटीकता में सुधार के लिए इसे स्थानांतरित और समायोजित किया जा सकता है।
जीसीपी के न्यूनतम सेट के साथ, ज्ञात निर्देशांक को वांछित प्रकार के परिवर्तन के लिए गणितीय समीकरणों में दर्ज किया जा सकता है, जिसे गुणांक निर्धारित करने और पूरे ग्रिड के लिए उपयोग करने के लिए सूत्र प्राप्त करने के लिए रैखिक बीजगणित का उपयोग करके हल किया जा सकता है।[8]: 116 उदाहरण के लिए, उपरोक्त रैखिक एफ़िन परिवर्तन में छह अज्ञात गुणांक हैं, इसलिए ज्ञात < वाले छह समीकरण हैं> इन्हें प्राप्त करने के लिए तीन जमीनी नियंत्रण बिंदुओं की आवश्यकता होगी।[7]: 171 दूसरे क्रम के बहुपद के लिए न्यूनतम छह जमीनी नियंत्रण बिंदुओं की आवश्यकता होती है, इत्यादि।
दर्ज किए गए जीसीपी शायद ही कभी पूरी तरह से स्थित होते हैं और यहां तक कि शायद ही कभी छवि के बाकी हिस्सों में विकृति का पूरी तरह से प्रतिनिधित्व करते हैं, लेकिन बीजगणितीय समाधान, जो एक आदर्श मिलान प्रतीत होता है, किसी भी त्रुटि को छिपा देता है। इससे बचने के लिए, न्यूनतम आवश्यक सेट से अधिक सेट बनाना (एक अतिनिर्धारित प्रणाली बनाना) और फ़ंक्शन पैरामीटर का एक सेट प्राप्त करने के लिए कम से कम वर्ग प्रतिगमन का उपयोग करना आम बात है जो बिंदुओं से सबसे अधिक मेल खाता है।[8]: 116 यह लगभग कभी भी पूर्ण मिलान नहीं होता है, इसलिए प्रत्येक GCP स्थान और फ़ंक्शन द्वारा अनुमानित स्थान के बीच अंतर को मूल-माध्य-वर्ग विचलन | रूट-मीन-स्क्वायर त्रुटि (RMSE) के रूप में मापा और सारांशित किया जा सकता है। इस प्रकार कम आरएमएसई का मतलब है कि परिवर्तन सूत्र जीसीपी से निकटता से मेल खाते हैं।
एक बार फ़ंक्शन पैरामीटर निर्धारित हो जाने के बाद, परिवर्तन फ़ंक्शंस का उपयोग छवि के प्रत्येक पिक्सेल को उसके वास्तविक-विश्व स्थान में बदलने के लिए किया जा सकता है। इस परिवर्तन को स्थायी बनाने के लिए आमतौर पर दो विकल्प उपलब्ध हैं। एक विकल्प यह है कि मापदंडों को स्वयं भू-स्थानिक मेटाडेटा के रूप में सहेजा जाए, या तो छवि फ़ाइल के हेडर में ही (उदाहरण के लिए, जियो टीआईएफएफ), या छवि फ़ाइल के साथ संग्रहीत साइडकार फ़ाइल में (उदाहरण के लिए, एक विश्व फ़ाइल)। इस मेटाडेटा के साथ, सॉफ़्टवेयर छवि प्रदर्शित करते समय गतिशील रूप से परिवर्तन कर सकता है, ताकि यह वांछित समन्वय प्रणाली में अन्य डेटा के साथ संरेखित हो। वैकल्पिक विधि छवि सुधार है, जिसमें छवि को एक नया रेखापुंज ग्रिड बनाने के लिए छवि स्केलिंग किया जाता है जो मूल रूप से समन्वय प्रणाली से जुड़ा होता है। जब तक गतिशील समन्वय परिवर्तनों की गहन गणना के लिए कंप्यूटिंग शक्ति उपलब्ध नहीं हो गई, तब तक सुधार पारंपरिक रूप से एकमात्र विकल्प था; अब भी, संशोधित छवि के साथ ड्राइंग और विश्लेषण का प्रदर्शन बेहतर है।
सॉफ़्टवेयर कार्यान्वयन
- Esri GIS सॉफ़्टवेयर में यह क्षमता कई वर्षों से है, जिसमें ArcGIS Pro में जियोरेफ़रेंसिंग टूल भी शामिल है।[6]* क्यूजीआईएस में एक जियोरेफरेंसर टूल है, जिसे मूल रूप से एक ऐड-ऑन के रूप में विकसित किया गया था लेकिन अब इसे सॉफ्टवेयर में एकीकृत किया गया है।[9]* इमेज जियोरेफरेंसिंग और रेक्टिफिकेशन ERDAS इमेजिन में
- इमेज टू मैप रजिस्ट्रेशन ENVI (सॉफ्टवेयर) में
यह भी देखें
संदर्भ
- ↑ "What does "georeferenced" mean?". www.usgs.gov. U.S. Geological Survey. Retrieved 2022-01-04.
- ↑ Yao, Xiaobai A. (2020-01-01), "Georeferencing and Geocoding", in Kobayashi, Audrey (ed.), International Encyclopedia of Human Geography (Second Edition) (in English), Oxford: Elsevier, pp. 111–117, doi:10.1016/b978-0-08-102295-5.10548-7, ISBN 978-0-08-102296-2, S2CID 241797395, retrieved 2022-01-04
- ↑ Hackeloeer, A.; Klasing, K.; Krisp, J.M.; Meng, L. (2014). "Georeferencing: a review of methods and applications". Annals of GIS. 20 (1): 61–69. doi:10.1080/19475683.2013.868826. S2CID 38306705.
- ↑ Leidner, J.L. (2017). "Georeferencing: From Texts to Maps". International Encyclopedia of Geography: People, the Earth, Environment and Technology. vi: 2897–2907. doi:10.1002/9781118786352.wbieg0160. ISBN 9780470659632.
- ↑ 5.0 5.1 Longley, Paul A.; Goodchild, Michael F.; Maguire, David J.; Rhind, David W. (2011). भौगोलिक सूचना प्रणाली एवं विज्ञान (3rd ed.). Wiley.
- ↑ 6.0 6.1 "जियोरेफ़रेंसिंग का अवलोकन". ArcGIS Pro Documentation. Esri. Retrieved 8 January 2023.
- ↑ 7.0 7.1 7.2 Bolstad, Paul (2019). GIS Fundamentals: A First Text on Geographic Information Systems. Ann Arbor, MI: XanEdu. ISBN 978-1-59399-552-2.
- ↑ 8.0 8.1 8.2 Chang, Kang-tsung (2014). भौगोलिक सूचना प्रणाली का परिचय (7th ed.). McGraw-Hill. pp. 50–57. ISBN 978-0-07-352290-6.
- ↑ 9.0 9.1 "16.3 Georeferencer". QGIS 3.22 documentation. OSGEO. Retrieved 8 January 2023.
अग्रिम पठन
- Hill, Linda L. (2006). Georeferencing. The MIT Press. ISBN 978-0262083546.
बाहरी संबंध
- Discovering Location Indicators of Toponyms from News to Improve Gazetteer-Based Geo-Referencing - paper presented at Geoinfo 2008
- Geographical referencing resources for social scientists online tutorial material from the University of Southampton, UK