गुणक आदर्श
क्रमविनिमेय बीजगणित में, जटिल संख्या बीजगणितीय विविधता और वास्तविक संख्या सी पर आदर्श (रिंग सिद्धांत) के शीफ (गणित) से जुड़े गुणक आदर्श में (स्थानीय रूप से) फ़ंक्शन एच शामिल होते हैं जैसे कि
स्थानीय रूप से एकीकृत फ़ंक्शन है, जहां fi आदर्श के स्थानीय जनरेटर का सीमित सेट हैं। गुणक आदर्शों को स्वतंत्र रूप से प्रस्तुत किया गया था Nadel (1989) (जिन्होंने आदर्शों के बजाय जटिल विविधताओं पर काम किया) और Lipman (1993) , जिन्होंने इन्हें संयुक्त आदर्श कहा।
सर्वेक्षण लेखों में गुणक आदर्शों पर चर्चा की गई है Blickle & Lazarsfeld (2004) , Siu (2005), और Lazarsfeld (2009) .
बीजगणितीय ज्यामिति
बीजगणितीय ज्यामिति में, प्रभावी का गुणक आदर्श -विभाजक (बीजगणितीय ज्यामिति) डी के भिन्नात्मक भागों से आने वाली विलक्षणताओं को मापता है। गुणक आदर्शों को अक्सर कोडैरा लुप्त प्रमेय और कावामाता-विहवेग लुप्त प्रमेय जैसे लुप्त प्रमेयों के साथ मिलकर लागू किया जाता है।
मान लीजिए कि X सहज जटिल किस्म है और D प्रभावी किस्म है -इस पर विभाजक. होने देना D का लॉग रिज़ॉल्यूशन हो (उदाहरण के लिए, हिरोनका का रिज़ॉल्यूशन)। D का गुणक आदर्श है
कहाँ सापेक्ष विहित भाजक है: . यह का आदर्श पूल है . यदि D अभिन्न है, तो .
यह भी देखें
- विहित विलक्षणता
- परीक्षा आदर्श
संदर्भ
- ब्लिकल, मैनुएल; लाज़र्सफ़ेल्ड, रॉबर्ट (2004), "गुणक आदर्शों का एक अनौपचारिक परिचय", क्रमविनिमेय बीजगणित में रुझान, गणित। विज्ञान. रेस. उदाहरण. प्रकाशन., vol. 51, कैम्ब्रिज यूनिवर्सिटी प्रेस, pp. 87–114, CiteSeerX 10.1.1.241.4916, doi:10.1017/CBO9780511756382.004, ISBN 9780521831956, MR 2132649, S2CID 10215098
- लाज़र्सफ़ेल्ड, रॉबर्ट (2009), "गुणक आदर्शों पर एक संक्षिप्त पाठ्यक्रम", 2008 पीसीएमआई व्याख्यान, arXiv:0901.0651, Bibcode:2009arXiv0901.0651L
- लाज़र्सफ़ेल्ड, रॉबर्ट (2004). बीजगणितीय ज्यामिति II में सकारात्मकता. बर्लिन: स्प्रिंगर-वेरलाग.
- लिपमैन, जोसफ (1993), "द्वि-आयामी नियमित स्थानीय वलय में सरल पूर्ण आदर्शों का जोड़ और ध्रुव" (PDF), बुलेटिन डे ला सोसाइटी मैथेमैटिक डे बेल्गिक। सेरी ए, 45 (1): 223–244, MR 1316244
- Nadel, Alan Michael (1989), "गुणक आदर्श समूह और सकारात्मक अदिश वक्रता के काहलर-आइंस्टीन मेट्रिक्स का अस्तित्व", संयुक्त राज्य अमेरिका की राष्ट्रीय विज्ञान अकादमी की कार्यवाही, 86 (19): 7299–7300, Bibcode:1989PNAS...86.7299N, doi:10.1073/pnas.86.19.7299, JSTOR 34630, MR 1015491, PMC 298048, PMID 16594070
- Siu, Yum-Tong (2005), "जटिल और बीजगणितीय ज्यामिति में गुणक आदर्श ढेर", विज्ञान चीन गणित, 48 (S1): 1–31, arXiv:math/0504259, Bibcode:2005ScChA..48....1S, doi:10.1007/BF02884693, MR 2156488, S2CID 119163294