हिग्स बंडल

From Vigyanwiki
Revision as of 18:03, 29 July 2023 by Indicwiki (talk | contribs) (9 revisions imported from alpha:हिग्स_बंडल)

गणित में, हिग्स बंडल ऐसी जोड़ी है जो पूर्णसममितिक सदिश बंडल E एवं हिग्स क्षेत्र से मिलकर, पूर्णसममितिक 1-रूप E के एंडोमोर्फिज्म के बंडल में मान लेता है जैसे कि है। ऐसे जोड़े निगेल हिचिन (1987) द्वारा प्रस्तुत किए गए थे,[1] जिसने हिग्स बोसोन के साथ सादृश्य के कारण पीटर हिग्स के पश्चात, क्षेत्र का नाम, रखा गया था। 'हिग्स बंडल' शब्द एवं स्थिति (जो रीमैन सतहों पर हिचिन के मूल समुच्चय में रिक्त है) को पश्चात में चार्ल्स सिम्पसन द्वारा प्रस्तुत किया गया था।[2]

हिग्स बंडल को पूर्णसममितिक सदिश बंडल पर फ्लैट पूर्णसममितिक एफ़िन संबंध के सरलीकृत संस्करण के रूप में सोचा जा सकता है, जहां व्युत्पन्न को शून्य पर स्केल किया जाता है। नॉनबेलियन हॉज पत्राचार का कहना है कि उपयुक्त स्थिरता स्थितियों के अंतर्गत, चौरस, प्रक्षेप्य समष्टि बीजगणितीय विविधता पर फ्लैट पूर्णसममितिक संबंध की श्रेणी, विविधता के मौलिक समूह के प्रतिनिधित्व की श्रेणी, एवं इस आकृति पर हिग्स बंडलों की श्रेणी वास्तव में समकक्ष हैं। इसलिए, कोई सरल हिग्स बंडलों के साथ कार्य करके फ्लैट संबंध के साथ गेज सिद्धांत के विषय में परिणाम निकाल सकता है।

इतिहास

हिग्स बंडलों को अंतर्गत बार 1987 में हिचिन द्वारा प्रस्तुत किया गया था,[1] उस विशिष्ट विषय के लिए जहां पूर्णसममितिक सदिश बंडल E सघन (गणित) रीमैन सतह पर है। इसके अतिरिक्त, हिचिन का पेपर अधिकतर उस विषय पर विचार करता है जहां सदिश बंडल रैंक 2 है (अर्थात्, फाइबर 2-आयामी सदिश समष्टि है)। रैंक 2 सदिश बंडल प्रमुख बंडल SU(2) बंडल के लिए हिचिन के समीकरणों के समाधान स्थान के रूप में उत्पन्न होता है।

रीमैन सतहों पर सिद्धांत को कार्लोस सिम्पसन द्वारा उस विषय में सामान्यीकृत किया गया था जहां बेस मैनिफोल्ड सघन एवं काहलर है। आयाम तक सीमित रहने से विषय हिचिन के सिद्धांत को पुनः प्राप्त करता है।

हिग्स बंडल की स्थिरता

हिग्स बंडलों के सिद्धांत में विशेष रुचि स्थिर हिग्स बंडल की धारणा है। ऐसा करने के लिए, -अपरिवर्तनीय उप-बंडलों को पूर्व परिभाषित किया जाना चाहिए।

हिचिन की मूल विचार में, L लेबल वाला रैंक-1 सबबंडल -अपरिवर्तनीय है, यदि साथ रीमैन सतह M पर विहित बंडल है। तत्पश्चात हिग्स बंडल स्थिर है यदि, प्रत्येक अपरिवर्तनीय उपसमूह के लिए का सबबंडल है,

रीमैन सतह पर समष्टि सदिश बंडल के लिए डिग्री की सामान्य धारणा है।

यह भी देखें

संदर्भ

  1. Hitchin, Nigel (1987). "रीमैन सतह पर आत्म-द्वैत समीकरण". London Mathematical Society. 55 (1): 59–126. doi:10.1112/plms/s3-55.1.59. Retrieved 10 November 2022.
  2. Simpson, Carlos (1992). "हिग्स बंडल और स्थानीय सिस्टम" (PDF). Publications Mathématiques de l'IHÉS. 75 (1): 5–95. doi:10.1007/BF02699491. S2CID 56417181. Retrieved 10 November 2022.