टोपोलॉजिकल गतिशीलता

From Vigyanwiki
Revision as of 16:20, 26 July 2023 by alpha>Manjuu

गणित में, टोपोलॉजिकल डायनामिक्स डायनामिक सिस्टम्स के सिद्धांत की शाखा है जिसमें सामान्य टोपोलॉजी के दृष्टिकोण से डायनेमिक सिस्टम के गुणात्मक, स्पर्शोन्मुख गुणों का अध्ययन किया जाता है।

क्षेत्र

टोपोलॉजिकल डायनेमिक्स में अध्ययन का केंद्रीय उद्देश्य टोपोलॉजिकल डायनेमिक सिस्टम है, अर्थात टोपोलॉजिकल स्पेस, निरंतर परिवर्तन (टोपोलॉजी), सतत प्रवाह, या अधिक सामान्यतः, उस स्थान के निरंतर परिवर्तनों का परिवर्तन अर्धसमूह या टोपोलॉजिकल डायनामिक की उत्पत्ति ट्रेजेकटोरीज़ के स्पर्शोन्मुख गुणों के अध्ययन में निहित है (गणित) सामान्य अंतर समीकरण, विशेष रूप से, सीमा सेट का व्यवहार और गति की दोहराव की विभिन्न अभिव्यक्तियाँ, जैसे आवधिक प्रक्षेपवक्र, पुनरावृत्ति और न्यूनतमता, स्थिरता, गैर-परिवर्तन वाले बिंदु जॉर्ज बिरखॉफ़ को इस क्षेत्र का संस्थापक माना जाता है। 1960 के दशक की प्रारंभ में हिलेल फर्स्टनबर्ग द्वारा सिद्ध किए गए न्यूनतम दूरस्थ प्रवाह के लिए संरचना प्रमेय ने न्यूनतम प्रवाह के वर्गीकरण पर बहुत कार्य करने के लिए प्रेरित किया था। 1970 और 1980 के दशक में बहुत सारा शोध एक-आयामी मानचित्रों की टोपोलॉजिकल डायनामिक विशेष रूप से, अंतराल और वृत्त के टुकड़े-टुकड़े रैखिक फ़ंक्शन स्व-मानचित्र के लिए समर्पित था।

स्मूथ डायनामिक सिस्टम्स के सिद्धांत के विपरीत, जहां अध्ययन का मुख्य उद्देश्य डिफोमोरफिज़्म या स्मूथ प्रवाह के साथ स्मूथ विविधता है, टोपोलॉजिकल डायनामिक में विचार किए गए फेज स्पेस सामान्य मीट्रिक स्थान (सामान्यतः, कॉम्पैक्ट) होते हैं। इसके लिए पूरी तरह से अलग तकनीकों के विकास की आवश्यकता होती है, किन्तु स्मूथ सेटिंग में भी लचीलेपन की अतिरिक्त डिग्री की अनुमति मिलती है, क्योंकि अपरिवर्तनीय मैनिफोल्ड अधिकांशतः टोपोलॉजिकल रूप से बहुत सम्मिश्र होते हैं (सीएफ सीमा चक्र, अद्वितीय आकर्षण); इसके अतिरिक्त, प्रतीकात्मक अभ्यावेदन के माध्यम से उत्पन्न होने वाले शिफ्ट रिक्त स्थान को अधिक ज्यामितीय क्रियाओं के साथ समान स्तर पर माना जा सकता है। टोपोलॉजिकल डायनेमिक्स का डायनामिकल सिस्टम के एर्गोडिक सिद्धांत के साथ घनिष्ठ संबंध है, और इसके पश्चात् की कई मौलिक अवधारणाओं में टोपोलॉजिकल एनालॉग्स (सीएफ कोलमोगोरोव-सिनाई एन्ट्रॉपी और टोपोलॉजिकल एन्ट्रापी) हैं।

यह भी देखें

संदर्भ

  • D. V. Anosov (2001) [1994], "टोपोलॉजिकल गतिशीलता", Encyclopedia of Mathematics, EMS Press
  • Joseph Auslander (ed.). "Topological dynamics". Scholarpedia.
  • Robert Ellis, Lectures on topological dynamics. W. A. Benjamin, Inc., New York 1969
  • Walter Gottschalk, Gustav Hedlund, Topological dynamics. American Mathematical Society Colloquium Publications, Vol. 36. American Mathematical Society, Providence, R. I., 1955
  • J. de Vries, Elements of topological dynamics. Mathematics and its Applications, 257. Kluwer Academic Publishers Group, Dordrecht, 1993 ISBN 0-7923-2287-8
  • Ethan Akin, The General Topology of Dynamical Systems, AMS Bookstore, 2010, ISBN 978-0-8218-4932-3
  • J. de Vries, Topological Dynamical Systems: An Introduction to the Dynamics of Continuous Mappings, De Gruyter Studies in Mathematics, 59, De Gruyter, Berlin, 2014, ISBN 978-3-1103-4073-0
  • Jian Li and Xiang Dong Ye, Recent development of chaos theory in topological dynamics, Acta Mathematica Sinica, English Series, 2016, Volume 32, Issue 1, pp. 83–114.