रेफ्रेन्स इलेक्ट्रोड

From Vigyanwiki
मानक हाइड्रोजन इलेक्ट्रोड योजना:
1) प्लैटिनाइज़्ड प्लेटिनम इलेक्ट्रोड,
2) हाइड्रोजन गैस,
3) H की गतिविधि वाला एसिड सॉल्यूशन+ = 1 mol/L,
4) ऑक्सीजन हस्तक्षेप की रोकथाम के लिए हाइड्रोसील,
5) जलाशय जिसके माध्यम से गैल्वेनिक सेल के दूसरे आधे तत्व को जोड़ा जाना चाहिए। अन्य इलेक्ट्रोड और समाधान के आधार पर मिश्रण को कम करने के लिए संकीर्ण ट्यूब के माध्यम से या नमक पुल के माध्यम से कनेक्शन प्रत्यक्ष हो सकता है। यह रुचि के काम करने वाले इलेक्ट्रोड के लिए आयनिक प्रवाहकीय पथ बनाता है।

संदर्भ इलेक्ट्रोड इलेक्ट्रोड है जिसमें स्थिर और प्रसिद्ध इलेक्ट्रोड क्षमता होती है। सेल में गति लेने वाली समग्र रासायनिक प्रतिक्रिया दो स्वतंत्र अर्ध-सेल|अर्ध-प्रतिक्रियाओं से बनी होती है, जो दो इलेक्ट्रोड में रासायनिक परिवर्तनों का वर्णन करती है। काम कर रहे इलेक्ट्रोड पर प्रतिक्रिया पर ध्यान केंद्रित करने के लिए, संदर्भ इलेक्ट्रोड को रेडॉक्स प्रतिक्रिया के प्रत्येक भागीदार के निरंतर (बफर या संतृप्त) सांद्रता के साथ मानकीकृत किया जाता है।[1]

संदर्भ इलेक्ट्रोड का उपयोग करने के कई तरीके हैं। सबसे सरल तब होता है जब विद्युत रासायनिक सेल बनाने के लिए संदर्भ इलेक्ट्रोड को आधे सेल के रूप में उपयोग किया जाता है। यह अन्य आधे सेल की कमी क्षमता को निर्धारित करने की अनुमति देता है। अलगाव में इलेक्ट्रोड की क्षमता (पूर्ण इलेक्ट्रोड क्षमता) को मापने के लिए सटीक और व्यावहारिक विधि अभी तक विकसित नहीं हुई है।

जलीय संदर्भ इलेक्ट्रोड

मानक हाइड्रोजन इलेक्ट्रोड (एसएचई) के संबंध में सामान्य संदर्भ इलेक्ट्रोड और क्षमता:

बायां

अंगूठा

गैर-जलीय संदर्भ इलेक्ट्रोड

हालांकि गुणात्मक रूप से प्रणालियों की तुलना करने के लिए सॉल्वैंट्स के बीच तुलना करना सुविधाजनक है, यह मात्रात्मक रूप से सार्थक नहीं है। पीके जितनाa सॉल्वैंट्स के बीच संबंधित हैं, लेकिन समान नहीं हैं, ऐसा ही E° के मामले में भी है। जबकि SHE गैर-जलीय कार्य के लिए उचित संदर्भ प्रतीत हो सकता है क्योंकि यह पता चला है कि प्लैटिनम एसीटोनिट्राइल सहित कई सॉल्वैंट्स द्वारा तेजी से जहरीला है। [3] संभावित में अनियंत्रित बहाव के कारण। SCE और संतृप्त Ag/AgCl दोनों जलीय इलेक्ट्रोड हैं जो संतृप्त जलीय घोल के आसपास आधारित हैं। जबकि छोटी अवधि के लिए इस तरह के जलीय इलेक्ट्रोड का उपयोग गैर-जलीय समाधानों के संदर्भ में संभव हो सकता है, दीर्घकालिक परिणाम भरोसेमंद नहीं होते हैं। जलीय इलेक्ट्रोड का उपयोग तरल-तरल जंक्शन के साथ-साथ संदर्भ डिब्बे और शेष सेल के बीच विभिन्न आयनिक संरचना के रूप में सेल को अपरिभाषित, चर और अमाप्य जंक्शन क्षमता का परिचय देता है।[4] जैसा कि पहले उल्लेख किया गया है, गैर-जलीय प्रणालियों के साथ जलीय संदर्भ इलेक्ट्रोड का उपयोग करने के खिलाफ सबसे अच्छा तर्क यह है कि विभिन्न सॉल्वैंट्स में मापा गया क्षमता सीधे तुलनीय नहीं है।[5] उदाहरण के लिए, Fc0/+ युगल विलायक के प्रति संवेदनशील है।[6][7]

Solvent Formula E1/2 (V)
(FeCp20/+ vs SCE,
0.1 M NBu4PF6 at 298 K)
Acetonitrile CH3CN 0.40,[6] 0.382[7]
Dichloromethane CH2Cl2 0.46,[6] 0.475[7]
Tetrahydrofuran THF 0.56,[6] 0.547[7]
Dimethylformamide DMF 0.45,[6] 0.470[7]
Acetone (CH3)2C=O 0.48[6]
Dimethylsulfoxide DMSO 0.435[7]
Dimethoxyethane DME 0.51,[6] 0.580[7]

अर्ध-संदर्भ इलेक्ट्रोड (क्यूआरई) ऊपर उल्लिखित मुद्दों से बचाता है। फेरोसीन या किसी अन्य आंतरिक मानक के साथ क्यूआरई, जैसे कि कोबाल्टोसिन या डेकामेथिलफेरोसेन, जिसे वापस फेरोसीन के रूप में संदर्भित किया गया है, गैर-जलीय कार्य के लिए आदर्श है। 1960 के दशक की शुरुआत से ही फेरोसीन कई कारणों से गैर-जलीय कार्य के लिए मानक संदर्भ के रूप में स्वीकृति प्राप्त कर रहा है, और 1984 में, IUPAC ने मानक रेडॉक्स युगल के रूप में फेरोसीन (0/1+) की सिफारिश की।[8] क्यूआरई इलेक्ट्रोड की तैयारी सरल है, जिससे प्रयोगों के प्रत्येक सेट के साथ नया संदर्भ तैयार किया जा सकता है। क्यूआरई को नए सिरे से बनाया जाता है, इसलिए इलेक्ट्रोड के अनुचित भंडारण या रखरखाव से भी कोई सरोकार नहीं है। क्यूआरई अन्य संदर्भ इलेक्ट्रोड की तुलना में अधिक किफायती भी हैं।

अर्ध-संदर्भ इलेक्ट्रोड (QRE) बनाने के लिए:

  1. चांदी के तार के टुकड़े को केंद्रित एचसीएल में डालें और फिर तार को लिंट-फ्री सफाई वाले कपड़े पर सूखने दें। यह इलेक्ट्रोड की सतह पर AgCl की अघुलनशील परत बनाता है और आपको Ag/AgCl तार देता है। हर कुछ महीनों में डिपिंग दोहराएं या यदि क्यूआरई ड्रिफ्ट होने लगे।
  2. वैकोर ग्लास मुक्त (4 मिमी व्यास) और समान व्यास का ग्लास ट्यूबिंग प्राप्त करें। हीट सिकोड़ने वाली टेफ्लॉन टयूबिंग के साथ ग्लास टयूबिंग में व्यकोर ग्लास फ्रिट संलग्न करें।
  3. खंगालें फिर साफ ग्लास ट्यूब को सपोर्टिंग इलेक्ट्रोलाइट सॉल्यूशन से भरें और Ag/AgCl तार डालें।
  4. फेरोसीन (0/1+) जोड़े को एसीटोनिट्रिल समाधान में इस एजी/एजीसीएल क्यूआरई बनाम लगभग 400 एमवी झूठ बोलना चाहिए। यह क्षमता विशिष्ट अपरिभाषित स्थितियों के साथ 200 mV तक भिन्न होगी, इस प्रकार प्रयोग के दौरान किसी बिंदु पर आंतरिक मानक जैसे कि फेरोसिन जोड़ना हमेशा आवश्यक होता है।

छद्म संदर्भ इलेक्ट्रोड

छद्म संदर्भ इलेक्ट्रोड ऐसा शब्द है जो अच्छी तरह से परिभाषित नहीं है और छद्म और अर्ध के बाद से कई अर्थ होने पर सीमाएं अक्सर दूसरे के लिए उपयोग की जाती हैं। वे छद्म-संदर्भ इलेक्ट्रोड नामक इलेक्ट्रोड का वर्ग हैं क्योंकि वे निरंतर क्षमता बनाए नहीं रखते हैं लेकिन स्थितियों के साथ अनुमानित रूप से भिन्न होते हैं। यदि शर्तें ज्ञात हैं, तो क्षमता की गणना की जा सकती है और इलेक्ट्रोड को संदर्भ के रूप में इस्तेमाल किया जा सकता है। अधिकांश इलेक्ट्रोड सीमित परिस्थितियों में काम करते हैं, जैसे पीएच या तापमान, इस सीमा के बाहर इलेक्ट्रोड व्यवहार अप्रत्याशित हो जाता है। छद्म-संदर्भ इलेक्ट्रोड का लाभ यह है कि परिणामी भिन्नता को सिस्टम में शामिल किया जाता है जिससे शोधकर्ताओं को स्थितियों की विस्तृत श्रृंखला में सिस्टम का सटीक अध्ययन करने की अनुमति मिलती है।

Yttria- स्थिर zirconia (YSZ) झिल्ली इलेक्ट्रोड को विभिन्न प्रकार के रेडॉक्स जोड़े, जैसे, Ni / NiO के साथ विकसित किया गया था। उनकी क्षमता पीएच पर निर्भर करती है। जब पीएच मान ज्ञात होता है, तो इन इलेक्ट्रोडों को ऊंचे तापमान पर उल्लेखनीय अनुप्रयोगों के संदर्भ के रूप में नियोजित किया जा सकता है।[9]

यह भी देखें

संदर्भ

  1. Bard, Allen J.; Faulkner, Larry R. (2000-12-18). Electrochemical Methods: Fundamentals and Applications (2 ed.). Wiley. ISBN 978-0-471-04372-0.
  2. Bates, R.G. and MacAskill, J.B. (1978). "Standard potential of the silver-silver chloride electrode". Pure & Applied Chemistry, Vol. 50, pp. 1701–1706, http://www.iupac.org/publications/pac/1978/pdf/5011x1701.pdf
  3. Palibroda, Evelina (Jan 1967). "Note sur l'activation anodique de la surface du métal support de l'électrode à hydrogène". Electroanalytical Chemistry and Interfacial ElectrochemistryElectroanalytical Chemistry and Interfacial Electrochemistry (15): 92-95. doi:10.1016/0022-0728.
  4. Pavlishchuk, Vitaly V.; Anthony W. Addison (January 2000). "Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C". Inorganica Chimica Acta. 298 (1): 97–102. doi:10.1016/S0020-1693(99)00407-7.
  5. Geiger, William E. (2007-11-01). "Organometallic Electrochemistry: Origins, Development, and Future". Organometallics. 26 (24): 5738–5765. doi:10.1021/om700558k.
  6. 6.0 6.1 6.2 6.3 6.4 6.5 6.6 Connelly, N. G., Geiger, W. E., "Chemical Redox Agents for Organometallic Chemistry", Chem. Rev. 1996, 96, 877.
  7. 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Aranzaes, J. R., Daniel, M.-C., Astruc, D. "Metallocenes as references for the determination of redox potentials by cyclic voltammetry. Permethylated iron and cobalt sandwich complexes, inhibition by polyamine dendrimers, and the role of hydroxy-containing ferrocenes", Can. J. Chem., 2006, 84(2), 288-299. doi:10.1139/v05-262
  8. Gritzner, G.; J. Kuta (1984). "गैर-जलीय सॉल्वैंट्स में इलेक्ट्रोड क्षमता की रिपोर्टिंग पर सिफारिशें". Pure Appl. Chem. 56 (4): 461–466. doi:10.1351/pac198456040461. Retrieved 2016-09-30.
  9. R.W. Bosch, D.Feron, and J.P. Celis, "Electrochemistry in Light Water Reactors", CRC Press, 2007.

अग्रिम पठन

  1. "Reference Electrodes". NACE International. Retrieved 2020-06-29.