बेथ संख्या

From Vigyanwiki

गणित में, विशेष रूप से समुच्चय सिद्धांत में, 'बेथ संख्याएँ' अनंत गणनांक संख्याओं का एक निश्चित अनुक्रम होते हैं, जो परम्परागत रूप से इस तरह लिखे जाते हैं: , यहाँ दूसरे हिब्रू वर्णमाला के द्वितीय अक्षर ('बेथ') को प्रतिनिधित्व करते है।जबकि बेथ संख्याएँ अलेफ संख्याओं () से संबंधित होते हैं, परंतु यदि सामान्यकृत अव्याप्ति सिद्धांत सत्य न हो, तो ऐसे संख्याओं का सूचकांक से जुड़ा हुआ होता है जो से जुड़ा नहीं होता है।


परिभाष

बेथ संख्याओं को ट्रांसफ़िनिट रिकर्सन द्वारा परिभाषित किया गया है:

यहाँ एक क्रमसूचक और एक सीमा क्रमसूचक हैं।

गणित में, किसी भी गणनीय अनंत समुच्चय का आकार है, जैसे कि प्राकृतिक संख्याओं के समुच्चय इसीलिए है।

यदि एक क्रमसूचक हो, और गणनांक के साथ एक समुच्चय हो तो, निम्नलिखित संबंध होते हैं:

  • के ऊर्जा समुच्चय को दर्शाता है, अर्थात, सभी उपसमुच्चयों का समुच्चय ,
  • यहां, हम एक समुच्चय को दर्शाते हैं जो सभी फलन समुच्चय से {0,1} के मध्य ,
  • गणन गणन घातांक का परिणाम है, और
  • के ऊर्जा समुच्चय का गणनांक है।

इस परिभाषा को देखते हुए,

क्रमशः की गणनात्मकताएं हैं

समुच्चय सिद्धांत में, बेथ संख्या दूसरी बेथ संख्या है और यह , के बराबर है, जो संख्या प्रकार की व्याप्ति की परिमाणता है। और इसके अतिरिक्त , तीसरी बेथ संख्या व्याप्ति की शक्ति समुच्चय की परिमाणता है।

कैंटर के सिद्धांत के कारण, पिछले अनुक्रम में प्रत्येक समुच्चय की परिमाणता पूर्व वाले समुच्चय से स्पष्ट रूप से अधिक होती है। यहाँ, प्रत्येक समुच्चय की परिमाणता बेथ संख्या होती है अनंत सीमा λ के लिए, संबंधित बेथ संख्या, λ को उस सभी क्रमसूचक से अधिक सभी बेथ संख्याओं का उच्चतम सीमा के रूप में परिभाषित किया जाता है:

वॉन नेमन विश्व की परिमाणता बेथ संख्या के बराबर होती है।

एलेफ़ संख्याओं से संबंध

चयन के अभिगृहीत को ध्यान में रखते हुए, अनंत परिमाणताएँ रेखांकित होती हैं; कोई भी दो परिमाणताएँ पूर्वानुमानित नहीं हो सकती हैं। इसलिए, परिभाषा के अनुसार, कोई भी अनंत परिमाणता और के बीच नहीं हो सकती है,

इससे निम्नलिखित परिणाम होता है:

इस तर्क को पुनरावृत्ति करते हुए

 

सभी अध्यादेशों के लिए .सातत्य परिकल्पना समतुल्य है

सामान्यकृत अव्याप्ति सिद्धांत कहता है कि बेथ नंबर्स का यह अनुक्रम उसी अनुक्रम के समान होता है जो आलेफ संख्या के लिए है, अर्थात्

  

सभी आदेशिकों .के लिए । Short description/doc Short description/doc

विशिष्ट गणन्स

बेथ शून्य

चूँकि इसे परिभाषित किया गया है, या एलेफ़ शून्य, कार्डिनैलिटी के साथ समुच्चय होता है:

  • प्राकृतिक संख्याएँ N
  • परिमेय संख्याएं Q
  • बीजगणितीय संख्याएँ
  • गणनायोग्य संख्याएँ और संगणनीय समुच्चय
  • पूर्णांकों के परिमित समुच्चयो का समुच्चय
  • पूर्णांकों के बहुसमुच्चय का समुच्चय
  • पूर्णांकों के परिमित अनुक्रमों का समुच्चय

बेथ एक

गणनांक के साथ समुच्चय सम्मिलित करना:

बेथ दो

को '2c भी कहा जाता है' उच्चारण में c की घात दो होती है।

गणनांक के साथ समुच्चय सम्मिलित करना:

  • वास्तविक संख्याओं के समुच्चय का घात समुच्चय, इसलिए यह वास्तविक रेखा के उपसमुच्चयों की संख्या, या वास्तविक संख्याओं के समुच्चयों की संख्या है
  • प्राकृतिक संख्याओं के समुच्चयो के घात समुच्चय
  • R से R तक सभी फलन का सबसमुच्चय
  • Rm से Rn सभी कार्यों का समुच्चय
  • प्राकृतिक संख्याओं के समुच्चय से सभी कार्यों के समुच्चय की शक्ति समुच्चय, इसलिए यह प्राकृतिक संख्याओं के अनुक्रमों के समुच्चय की संख्या है
  • 'R, Q' और 'N' का स्टोन-सेच कॉम्पेक्टिफिकेशन
  • 'Rn' में नियतात्मक फ्रैक्टल का समुच्चय [1]
  • Rn में यादृच्छिक फ्रैक्टल्स का समुच्चय [2]


बेथ ओमेगा

को बेथ ओमेगा कहते हैं, जो सबसे छोटी अगणित सबल सीमा संख्या होती है।

सामान्यीकरण

कभी-कभी, बेथ संख्या ,को अधिक सामान्य चिह्न α के रूप में उपयोग किया जाता है जहां κ एक गणन है जिसे परिभाषित किया गया है

यदि λ एक सीमा क्रमसूचक है। तो

ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत (जेडएफ) में, किसी भी गणन κ और μ के लिए, एक क्रमिक संख्या α होता है जैसे:

और ZF में, किसी भी गणन κ और गणनांक α और β के लिए:

परिणाम स्वरूप, ZF में अभाव में या चयन के अभिगृहीत के साथ, किसी भी परिमाणों κ और μ के लिए निम्नलिखित समानता होती है:

सभी पर्याप्त रूप से बड़े गणनांक β के लिए मान्य है। अर्थात्, एक क्रमसूचक α है, जो प्रत्येक क्रमसूचक β ≥ α के लिए समानता रखता है।

यह स्थिति जर्मेलो-फ्रैंकल समुच्चय सिद्धांत में भी सत्य है जहां यूर-तत्व के साथ और उनके बिना भी अभिग्रहण के साथ, प्राय टूटे समुच्चय के साथ समान संख्या की जा सकती है। यदि अभिग्रहण के उपदान काम आता है, तो किसी भी यूर-तत्वों की समूह प्राय टूटे समुच्चय के साथ समान संख्या की होती है।

बोरेल निर्धारण

बोरेल निर्धारण गणनीय सूचकांक के सभी बेथ के अस्तित्व से निहित है।[3]


यह भी देखें

संदर्भ

  1. Soltanifar, Mohsen (2021). "नियतात्मक भग्न के लिए हॉसडॉर्फ आयाम प्रमेय का एक सामान्यीकरण". Mathematics. 9 (13): 1546. doi:10.3390/math9131546.
  2. Soltanifar, Mohsen (2022). "रैंडम फ्रैक्टल्स के लिए हॉसडॉर्फ आयाम प्रमेय का दूसरा सामान्यीकरण". Mathematics. 10 (5): 706. doi:10.3390/math10050706.
  3. Leinster, Tom (23 July 2021). "Borel Determinacy Does Not Require Replacement". The n-Category Café. The University of Texas at Austin. Retrieved 25 August 2021.


ग्रन्थसूची