गैर-आर्किमिडीयन आदेशित क्षेत्र

From Vigyanwiki
Revision as of 11:28, 24 July 2023 by alpha>Neetua08

गणित में, गैर-आर्किमिडीयन क्रमबद्ध क्षेत्र एक क्रमबद्ध क्षेत्र है जो आर्किमिडीयन प्रोपर्टी को संतुष्ट नहीं करता है। उदाहरण हैं लेवी-सीविटा क्षेत्र, अतिवास्तविक संख्याएं, वास्तविक संख्याएं, देह्न तल, और उपयुक्त क्रम के साथ वास्तविक गुणांकों के साथ तर्कसंगत कार्य का क्षेत्र होता है।

परिभाषा

आर्किमिडीयन प्रोपर्टी कुछ क्रमबद्ध क्षेत्रों की प्रोपर्टी है जैसे कि परिमेय संख्या या वास्तविक संख्या, यह बताते हुए कि प्रत्येक दो अवयव दूसरे के पूर्णांक गुणक के अन्दर हैं। यदि किसी क्षेत्र x < y में दो धनात्मक अवयव हैं जिसके लिए यह सही x/y नहीं है अपरिमेय होना चाहिए, शून्य से बड़ा किन्तु किसी भी पूर्णांक इकाई अंश से छोटा होना चाहिए। इसलिए, आर्किमिडीयन प्रोपर्टी का निषेध के अस्तित्व के समान है।

अनुप्रयोग

अतिवास्तविक संख्याएं, गैर-आर्किमिडीयन क्रमबद्ध क्षेत्र जिसमें उपक्षेत्र के रूप में वास्तविक संख्याएं होती हैं, जिसका उपयोग अमानक विश्लेषण के लिए गणितीय आधार प्रदान करने के लिए किया जा सकता है।

मैक्स डेहन ने गैर-यूक्लिडियन ज्यामिति का निर्माण करने के लिए, गैर-आर्किमिडीयन क्रमबद्ध क्षेत्र का उदाहरण, π क्षेत्र का उपयोग किया था। .[1]

तर्कसंगत कार्यों का क्षेत्र खत्म हो गया था क्रमबद्ध क्षेत्र का निर्माण करने के लिए उपयोग किया जा सकता है जो कॉची पूर्ण है (कॉची अनुक्रमों के अभिसरण के अर्थ में) किन्तु वास्तविक संख्या नहीं है।[2] इस पूर्णता को औपचारिक पॉवर श्रृंखला या औपचारिक लॉरेंट श्रृंखला के क्षेत्र के रूप में वर्णित किया जा सकता है . कभी-कभी पूर्ण शब्द का अर्थ यह होता है कि न्यूनतम ऊपरी सीमा वाली प्रोपर्टी रखती है। डेडेकाइंड-पूर्ण के इस अर्थ के साथ कोई पूर्ण गैर-आर्किमिडीयन क्रमबद्ध क्षेत्र नहीं हैं। पूर्ण शब्द के इन दो उपयोगों के बीच का सूक्ष्म अंतर कभी-कभी भ्रम का स्रोत होता है।

संदर्भ

  1. Dehn, Max (1900), "Die Legendre'schen Sätze über die Winkelsumme im Dreieck", Mathematische Annalen, 53 (3): 404–439, doi:10.1007/BF01448980, ISSN 0025-5831, JFM 31.0471.01.
  2. Counterexamples in Analysis by Bernard R. Gelbaum and John M. H. Olmsted, Chapter 1, Example 7, page 17.