लिलीफोर्स परीक्षण

From Vigyanwiki
Revision as of 17:12, 21 July 2023 by alpha>Anju

आंकड़ों में, लिलीफ़ोर्स परीक्षण कोलमोगोरोव-स्मिरनोव परीक्षण पर आधारित एक सामान्यता परीक्षण है। इसका उपयोग शून्य परिकल्पना का परीक्षण करने के लिए किया जाता है कि डेटा सामान्य वितरण आबादी से आता है, जब शून्य परिकल्पना कौन सा सामान्य वितरण निर्दिष्ट नहीं करती है; यानी, यह वितरण के अपेक्षित मूल्य और विचरण को निर्दिष्ट नहीं करता है।[1] इसका नाम जॉर्ज वाशिंगटन विश्वविद्यालय में सांख्यिकी के प्रोफेसर ह्यूबर्ट लिलीफोर्स के नाम पर रखा गया है।

परीक्षण के एक प्रकार का उपयोग अशक्त परिकल्पना का परीक्षण करने के लिए किया जा सकता है कि डेटा एक तेजी से वितरित आबादी से आता है, जब अशक्त परिकल्पना यह निर्दिष्ट नहीं करती है कि कौन सा घातांकीय वितरण है।[2]


परीक्षण

परीक्षण इस प्रकार आगे बढ़ता है:[1]

  1. पहले डेटा के आधार पर जनसंख्या माध्य और जनसंख्या भिन्नता का अनुमान लगाएं।
  2. फिर अनुमानित माध्य और अनुमानित विचरण के साथ अनुभवजन्य वितरण फ़ंक्शन और सामान्य वितरण के संचयी वितरण फ़ंक्शन (सीडीएफ) के बीच अधिकतम विसंगति का पता लगाएं। कोलमोगोरोव-स्मिरनोव परीक्षण की तरह, यह परीक्षण आँकड़ा होगा।
  3. अंत में, आकलन करें कि क्या अधिकतम विसंगति सांख्यिकीय महत्व के लिए काफी बड़ी है, इसलिए शून्य परिकल्पना को अस्वीकार करने की आवश्यकता है। यहीं पर यह परीक्षण कोलमोगोरोव-स्मिरनोव परीक्षण से अधिक जटिल हो जाता है। चूंकि उन आंकड़ों के आधार पर अनुमान द्वारा अनुमानित सीडीएफ को डेटा के करीब ले जाया गया है, इसलिए अधिकतम विसंगति को उससे छोटा बना दिया गया है, यदि शून्य परिकल्पना ने केवल एक सामान्य वितरण को चुना होता। इस प्रकार परीक्षण आँकड़ों का शून्य वितरण, यानी शून्य परिकल्पना को सत्य मानते हुए इसकी संभाव्यता वितरण, कोलमोगोरोव-स्मिरनोव वितरण की तुलना में स्टोकेस्टिक क्रम है। यह लिलीफोर्स वितरण है। आज तक, इस वितरण के लिए तालिकाओं की गणना केवल मोंटे कार्लो विधियों द्वारा की गई है।

1986 में परीक्षण के लिए महत्वपूर्ण मूल्यों की एक संशोधित तालिका प्रकाशित की गई थी।[3]


यह भी देखें

  • जार्के-बेरा परीक्षण

संदर्भ

  1. 1.0 1.1 Lilliefors, Hubert W. (1967-06-01). "माध्य और प्रसरण अज्ञात के साथ सामान्यता के लिए कोलमोगोरोव-स्मिरनोव परीक्षण पर". Journal of the American Statistical Association. 62 (318): 399–402. doi:10.1080/01621459.1967.10482916. ISSN 0162-1459. S2CID 16462094.
  2. Lilliefors, Hubert W. (1969-03-01). "माध्य अज्ञात के साथ घातीय वितरण के लिए कोलमोगोरोव-स्मिरनोव परीक्षण पर". Journal of the American Statistical Association. 64 (325): 387–389. doi:10.1080/01621459.1969.10500983. ISSN 0162-1459.
  3. Dallal, Gerard E.; Wilkinson, Leland (1986-11-01). "सामान्यता के लिए लिलीफ़ोर्स के परीक्षण सांख्यिकी के वितरण का एक विश्लेषणात्मक अनुमान". The American Statistician. 40 (4): 294–296. doi:10.1080/00031305.1986.10475419. ISSN 0003-1305.


स्रोत

  • कोनोवर, डब्ल्यू.जे. (1999), प्रैक्टिकल नॉनपैरामीट्रिक सांख्यिकी, तीसरा संस्करण। विली: न्यूयॉर्क.

बाहरी संबंध