सेमीमार्टिंगेल

From Vigyanwiki
Revision as of 13:52, 14 August 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

संभाव्यता सिद्धांत में, वास्तविक मान वाले प्रसंभाव्यता प्रक्रिया X को सेमीमार्टिंगेल कहा जाता है यदि इसे स्थानीय मार्टिंगेल और कैडलैग अनुकूलित परिमित-विचरण प्रक्रिया के योग के रूप में विघटित किया जा सकता है। सेमीमार्टिंगेल्स "अच्छे समाकलक" हैं, जो प्रक्रियाओं के सबसे बड़े वर्ग का निर्माण करते हैं जिसके संबंध में इटो समाकल और स्ट्रैटोनोविच समाकल को परिभाषित किया जा सकता है।

सेमीमार्टिंगेल्स का वर्ग अत्यन्त बड़ा (उदाहरण के लिए, सभी सतत भिन्न प्रक्रियाएं, ब्राउनियन गति और पॉइसन प्रक्रियाएं सम्मिलित हैं) है। सबमार्टिंगेल्स और सुपरमार्टिंगेल्स एक साथ सेमीमार्टिंगेल्स के उपसमूह का प्रतिनिधित्व करते हैं।

परिभाषा

फ़िल्टर किए गए संभाव्यता स्थान (Ω,F,(Ft)t ≥ 0,P) पर परिभाषित वास्तविक मान वाली प्रक्रिया X को सेमीमार्टिंगेल कहा जाता है यदि इसे इस प्रकार विघटित किया जा सकता है

जहां M एक स्थानीय मार्टिंगेल है और A स्थानीय रूप से सीमित भिन्नता की कैडलैग अनुकूलित प्रक्रिया है।

Rn-मान वाली प्रक्रिया X = (X1,…,Xn) सेमीमार्टिंगेल है यदि इसका प्रत्येक घटक Xi सेमीमार्टिंगेल है।

वैकल्पिक परिभाषा

सबसे पहले, सरल पूर्वानुमेय प्रक्रियाओं को समय T और FT-मापने योग्य यादृच्छिक चर A को रोकने के लिए रूप Ht = A1{t > T} की प्रक्रियाओं के रैखिक संयोजन के रूप में परिभाषित किया गया है। समाकल H है। ऐसी किसी भी सरल पूर्वानुमेय प्रक्रिया H के लिए X और वास्तविक मान वाली प्रक्रिया X है

इसे H की रैखिकता द्वारा सभी सरल पूर्वानुमेय प्रक्रियाओं तक विस्तारित किया जाता है। X में H है।

वास्तविक मान वाली प्रक्रिया X सेमीमार्टिंगेल है यदि यह कैडलैग, अनुकूलित है, और प्रत्येक t ≥ 0 के लिए है,

संभाव्यता में बंधा हुआ है. बिचटेलर-डेलाचेरी प्रमेय में कहा गया है कि ये दो परिभाषाएँ समतुल्य (प्रॉटर 2004, p. 144) हैं।

उदाहरण

  • अनुकूलित और सतत भिन्न प्रक्रियाएं निरंतर परिमित भिन्नता प्रक्रियाएं हैं, और इसलिए सेमीमार्टिंगेल्स हैं।
  • ब्राउनियन गति सेमीमार्टिंगेल है।
  • सभी कैडलैग मार्टिंगेल्स, सबमार्टिंगेल्स और सुपरमार्टिंगेल्स सेमीमार्टिंगेल्स हैं।
  • ईटो प्रक्रियाएं, जो रूप dX = σdW + μdt के प्रसंभाव्यता अवकल समीकरण को संतुष्ट करती हैं, सेमीमार्टिंगेल्स हैं। यहां, W एक ब्राउनियन गति है और σ, μ अनुकूलित प्रक्रियाएं हैं।
  • प्रत्येक लेवी प्रक्रिया सेमीमार्टिंगेल है।

हालाँकि साहित्य में अध्ययन की गई अधिकांश निरंतर और अनुकूलित प्रक्रियाएँ सेमीमार्टिंगेल्स हैं, लेकिन हमेशा ऐसी स्थिति नहीं होती है।

गुण

  • सेमीमार्टिंगेल्स प्रक्रियाओं का सबसे बड़ा वर्ग बनाते हैं जिसके लिए इटो समाकल को परिभाषित किया जा सकता है।
  • सेमीमार्टिंगेल्स के रैखिक संयोजन सेमीमार्टिंगेल्स हैं।
  • सेमीमार्टिंगेल्स के उत्पाद सेमीमार्टिंगेल्स हैं, जो कि इटो समाकल के लिए भागों के सूत्र द्वारा समाकलन का परिणाम है।
  • प्रत्येक सेमीमार्टिंगेल के लिए द्विघात भिन्नता उपस्थित है।
  • सेमीमार्टिंगेल्स का वर्ग वैकल्पिक अवरोध, स्थानीयकरण, समय के परिवर्तन और माप के पूर्ण निरंतर परिवर्तन के तहत संवृत्त है।
  • यदि X एक Rm मान वाला सेमीमार्टिंगेल है और f, Rm से Rn तक दो बार लगातार भिन्न होने वाला फ़ंक्शन है, तो f(X) सेमीमार्टिंगेल है। यह इटो के लेम्मा का परिणाम है।
  • सेमिमार्टिंगेल होने का गुण निस्पंदन को सिकोड़ने के तहत संरक्षित रहता है। अधिक सटीक रूप से, यदि X निस्पंदन Ft के संबंध में सेमीमार्टिंगेल है, और उपनिस्पंदन Gt के संबंध में अनुकूलित है, तो X एक Gt-सेमीमार्टिंगेल है।
  • (जैकोड का गणनीय विस्तार) सेमीमार्टिंगेल होने के गुण को असंबद्ध समुच्चयों के गणनीय समुच्चय द्वारा निस्पंदन को बढ़ाने के तहत संरक्षित किया जाता है। मान लीजिए कि Ft निस्पंदन है, और Gt, Ft द्वारा उत्पन्न निस्पंदन है और असंयुक्त मापनीय समुच्चयों का एक गणनीय समुच्चय है। फिर, प्रत्येक Ft-सेमीमार्टिंगेल भी Gt-सेमीमार्टिंगेल है। (प्रॉटर 2004, p. 53)

सेमीमार्टिंगेल अपघटन

परिभाषा के अनुसार, प्रत्येक सेमीमार्टिंगेल स्थानीय मार्टिंगेल और परिमित भिन्नता प्रक्रिया का योग है। हालाँकि, यह अपघटन विशिष्ट नहीं है।

सतत सेमीमार्टिंगेल्स

सतत सेमीमार्टिंगेल विशिष्ट रूप से X = M + A के रूप में विघटित होता है, जहां M सतत स्थानीय मार्टिंगेल है और A शून्य से प्रारम्भ होने वाली एक सतत परिमित भिन्नता प्रक्रिया है। (रोजर्स एंड & विलियम्स 1987, p. 358)

उदाहरण के लिए, यदि X प्रसंभाव्यता अवकल समीकरण dXt = σt dWt + bt dt को संतुष्ट करने वाली एक इटो प्रक्रिया है, तो

विशेष सेमीमार्टिंगेल्स

विशेष सेमीमार्टिंगेल अपघटन के साथ वास्तविक मान वाली प्रक्रिया है, जहां एक स्थानीय मार्टिंगेल है और शून्य से प्रारम्भ होने वाली एक अनुमानित परिमित भिन्नता प्रक्रिया है। यदि यह अपघटन उपस्थित है, तो यह पी-नल (P-null) समुच्चय तक विशिष्ट है।

प्रत्येक विशेष सेमीमार्टिंगेल एक सेमीमार्टिंगेल है। इसके विपरीत, सेमीमार्टिंगेल एक विशेष सेमीमार्टिंगेल है यदि और केवल तभी जब प्रक्रिया Xt* ≡ supst |Xs| स्थानीय रूप से समाकलनीय हो (प्रॉटर 2004, p. 130)

उदाहरण के लिए, प्रत्येक सतत सेमीमार्टिंगेल एक विशेष सेमीमार्टिंगेल है, इस स्थिति में M और A दोनों सतत प्रक्रियाएं हैं।

गुणात्मक अपघटन

याद रखें कि सेमीमार्टिंगेल के प्रसंभाव्यता घातांक को दर्शाता है। यदि विशेष सेमीमार्टिंगेल है जैसे कि , तो और एक स्थानीय मार्टिंगेल है।[1] प्रक्रिया को का गुणक प्रतिपूरक कहा जाता है और पहचान को का गुणक अपघटन कहा जाता है।

पूर्णतः असतत सेमीमार्टिंगेल्स / द्विघात शुद्ध-विषयांतर सेमीमार्टिंगेल्स

सेमीमार्टिंगेल को पूरी तरह से असतत (कलेनबर्ग 2002) कहा जाता है यदि इसकी द्विघात भिन्नता [X] परिमित भिन्नता शुद्ध-विषयांतर प्रक्रिया है, अर्थात,

.

इस परिभाषा के अनुसार, समय पूरी तरह से असतत सेमीमार्टिंगेल है, भले ही यह बिल्कुल भी कोई विषयांतर नहीं दिखाता है। वैकल्पिक (और अधिमानित) शब्दावली द्विघात शुद्ध-विषयांतर सेमीमार्टिंगेल (प्रॉटर 2004, p. 71) इस तथ्य को संदर्भित करती है कि विशुद्ध रूप से असतत सेमीमार्टिंगेल की द्विघात भिन्नता शुद्ध विषयांतर प्रक्रिया है। प्रत्येक परिमित भिन्नता सेमीमार्टिंगेल द्विघात शुद्ध-विषयांतर सेमीमार्टिंगेल है। अनुकूलित सतत प्रक्रिया द्विघात शुद्ध-विषयांतर सेमीमार्टिंगेल है यदि और केवल यदि यह परिमित भिन्नता का है।

प्रत्येक सेमीमार्टिंगेल X के लिए शून्य से प्रारम्भ होने वाला एक विशिष्ट सतत स्थानीय मार्टिंगेल होता है, जैसे कि द्विघात शुद्ध-विषयांतर सेमीमार्टिंगेल (हे, वांग & यान 1992, p. 209, कलेनबर्ग 2002, p. 527) है। स्थानीय मार्टिंगेल को X का सतत मार्टिंगेल भाग कहा जाता है।

ध्यान दें कि माप-विशिष्ट है। यदि और दो समतुल्य माप हैं तो प्रायः से भिन्न होता है, जबकि और दोनों द्विघात शुद्ध-विषयांतर सेमीमार्टिंगेल्स हैं। गिरसनोव की प्रमेय के अनुसार सतत परिमित भिन्नता प्रक्रिया है, जिससे प्राप्त होता है।

सेमीमार्टिंगेल के सतत-समय और असतत-समय घटक

प्रत्येक सेमीमार्टिंगेल में एक विशिष्ट अपघटन होता है

जहां , सतत-समय घटक पूर्वानुमानित समय पर विषयांतर नहीं है, और असतत-समय घटक सेमीमार्टिंगेल सांस्थितिकी में पूर्वानुमानित समय पर इसके विषयांतर के योग के बराबर है। एक तो है।[2] सतत समय घटक के विशिष्ट उदाहरण इटो प्रक्रिया और लेवी प्रक्रिया हैं। असतत-समय घटक को प्रायः मार्कोव श्रृंखला के रूप में लिया जाता है, लेकिन सामान्य तौर पर पूर्वानुमानित विषयांतर समय अच्छी तरह से व्यवस्थित नहीं हो सकता है, अर्थात, सैद्धांतिक रूप में प्रत्येक तर्कसंगत समय पर विषयांतर हो सकता है। यह भी ध्यान दें कि आवश्यक रूप से सीमित भिन्नता का नहीं है, भले ही यह इसके विषयांतर (सेमीमार्टिंगेल सांस्थितिकी में) के योग के बराबर है। उदाहरण के लिए, समय अंतराल पर स्वतंत्र वृद्धि के लिए लें, समय पर विषयांतर के साथ समान संभावना के साथ मान लें।

बहुरूपता पर सेमीमार्टिंगेल्स

सेमीमार्टिंगेल्स की अवधारणा, और प्रसंभाव्यता गणना का संबंधित सिद्धांत, विभेदक बहुरूपता में मानों को लेने वाली प्रक्रियाओं तक फैला हुआ है। बहुरूपता M पर प्रक्रिया X सेमीमार्टिंगेल है यदि f(X) M से R तक प्रत्येक सुचारू फलन f के लिए सेमीमार्टिंगेल है। (रोजर्स 1987, p. 24) सामान्य बहुरूपताओं पर सेमीमार्टिंगेल्स के लिए प्रसंभाव्यता गणना के लिए स्ट्रैटोनोविच समाकल के उपयोग की आवश्यकता होती है।

यह भी देखें

संदर्भ

  1. Lépingle, Dominique; Mémin, Jean (1978). "Sur l'integrabilité uniforme des martingales exponentielles". Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete (in français). 42 (3). Proposition II.1. doi:10.1007/BF00641409. ISSN 0044-3719.
  2. Černý, Aleš; Ruf, Johannes (2021-11-01). "प्योर-जंप सेमीमार्टिंगेल्स". Bernoulli. 27 (4): 2631. doi:10.3150/21-BEJ1325. ISSN 1350-7265.
  • He, Sheng-wu; Wang, Jia-gang; Yan, Jia-an (1992), Semimartingale Theory and Stochastic Calculus, Science Press, CRC Press Inc., ISBN 0-8493-7715-3
  • Kallenberg, Olav (2002), Foundations of Modern Probability (2nd ed.), Springer, ISBN 0-387-95313-2
  • Protter, Philip E. (2004), Stochastic Integration and Differential Equations (2nd ed.), Springer, ISBN 3-540-00313-4
  • Rogers, L.C.G.; Williams, David (1987), Diffusions, Markov Processes, and Martingales, vol. 2, John Wiley & Sons Ltd, ISBN 0-471-91482-7
  • Karandikar, Rajeeva L.; Rao, B.V. (2018), Introduction to Stochastic Calculus, Springer Ltd, ISBN 978-981-10-8317-4