हॉज संरचना
गणित में, एक हॉज संरचना, जिसका नाम डब्लू. हॉज संरचनाओं को पियरे डेलिग्ने (1970) द्वारा परिभाषित मिश्रित हॉज संरचनाओं के रूप में सभी जटिल वर्गों (भले ही वे एकवचन और गैर-पूर्ण हों) के लिए सामान्यीकृत किया गया है। हॉज संरचना का एक रूपांतर हॉज संरचनाओं का एक परिवार है जिसे मैनिफोल्ड द्वारा मानकीकृत किया गया है, जिसका सबसे पहले अध्ययन फिलिप ग्रिफिथ्स (1968) द्वारा किया गया था। मोरिहिको सैटो (1989) द्वारा इन सभी अवधारणाओं को जटिल वर्गों की तुलना में मिश्रित हॉज मॉड्यूल में सामान्यीकृत किया गया था।
हॉज संरचनाएं
हॉज संरचनाओं की परिभाषा
पूर्णांक प्रभाव n की अविकृत हॉज संरचना में एबेलियन समूह होता है और इसके जटिलीकरण H का अपघटन जटिल उप-स्थानों के प्रत्यक्ष योग में होता है। जहां p इस गुण के साथ कि का सम्मिश्र संयुग्म है।
हॉज निस्पंदन द्वारा H के प्रत्यक्ष योग अपघटन को प्रतिस्थापित करके समतुल्य परिभाषा प्राप्त की जाती है, जटिल उप-स्थान द्वारा H का सीमित घटता निस्पंदन, स्थिति के अधीन है।
इन दोनों विवरणों के बीच संबंध इस प्रकार दिया गया है:
उदाहरण के लिए, यदि X कॉम्पैक्ट काहलर मैनिफोल्ड है, पूर्णांक गुणांकों के साथ X का n-वाँ सह-समरूपता समूह है। जटिल गुणांकों वाला इसका n-वाँ सह-समरूपता समूह है और हॉज सिद्धांत उपरोक्त के अनुसार H के प्रत्यक्ष योग में अपघटन प्रदान करता है, ताकि ये डेटा प्रभाव n की अविकृत हॉज संरचना को परिभाषित करें। दूसरी ओर, 'हॉज-डी रैम स्पेक्ट्रल अनुक्रम' आपूर्ति करता है घटते निस्पंदन के साथ जैसा कि दूसरी परिभाषा में है।[1]
बीजगणितीय ज्यामिति में अनुप्रयोगों के लिए, अर्थात्, उनकी अवधि मानचित्रण द्वारा जटिल प्रक्षेप्य वर्गों का वर्गीकरण, प्रभाव n के सभी हॉज संरचनाओं का सेट बहुत बड़ा है। रीमैन द्विरेखीय संबंध का उपयोग करते हुए, इस स्तिथि में जिसे हॉज रीमैन द्विरेखीय संबंध कहा जाता है, इसे काफी हद तक सरल बनाया जा सकता है। 'प्रभाव n की ध्रुवीकृत हॉज संरचना' में हॉज संरचना सम्मिलित होती है और एक गैर-पतित पूर्णांक द्विरेखीय रूप Q पर (एबेलियन वर्ग ध्रुवीकरण और दोहरी एबेलियन वर्ग), जो रैखिकता द्वारा H तक विस्तारित है, और शर्तों को संतुष्ट करती है:
हॉज निस्पंदन के संदर्भ में, ये स्थितियाँ यही दर्शाती हैं
जहां C, H पर वेइल ऑपरेटर है, पर . द्वारा दिया गया है।
हॉज संरचना की एक और परिभाषा जटिल वेक्टर स्पेस पर -ग्रेडिंग और सर्कल समूह U(1) की कार्रवाई के बीच समानता पर आधारित है। इस परिभाषा में, द्वि-आयामी वास्तविक बीजगणितीय टोरस के रूप में देखे जाने वाले सम्मिश्र संख्याओं के गुणक समूह की एक क्रिया H पर दी गई है।[2] इस क्रिया में यह गुण होना चाहिए कि एक वास्तविक संख्या a, a द्वारा कार्य करती है। उपसमष्टि वह उपसमष्टि है जिस पर द्वारा गुणन के रूप में कार्य करता है।
A-हॉज संरचना
उद्देश्यों के सिद्धांत में, सहसंबद्धता के लिए अधिक सामान्य गुणांकों की अनुमति देना महत्वपूर्ण हो जाता है। हॉज संरचना की परिभाषा को वास्तविक संख्याओं के फ़ील्ड के नोएथेरियन सबरिंग A को ठीक करके संशोधित किया गया है, जिसके लिए एक फ़ील्ड है। फिर वज़न n की एक अविकृत हॉज A-संरचना को पहले की तरह परिभाषित किया गया है, जिसमें को A के साथ प्रतिस्थापित किया गया है। B के उपरिंग के लिए हॉज A-संरचनाओं और B-संरचनाओं से संबंधित आधार परिवर्तन और प्रतिबंध के प्राकृतिक फ़ैक्टर हैं।
मिश्रित हॉज संरचनाएं
1960 के दशक में वेइल अनुमानों के आधार पर जीन पियरे सेरेद्वारा इस बात पर ध्यान दिया गया कि यहां तक कि एकवचन (संभवतः कम करने योग्य) और गैर-पूर्ण बीजगणितीय वर्गों को भी 'आभासी बेट्टी संख्या' को स्वीकार करना चाहिए। अधिक सटीक रूप से, किसी को किसी भी बीजीय विविधता X को बहुपद PX(t) निर्दिष्ट करने में सक्षम होना चाहिए, गुणों के साथ, इसे आभासी पोनकारे बहुपद कहा जाता है
- यदि X एकवचन और प्रक्षेप्य (या पूर्ण) है
- यदि Y, X का बंद बीजगणितीय उपसमुच्चय है और U = X \ Y है
ऐसे बहुपदों का अस्तित्व एक सामान्य (एकवचन और गैर-पूर्ण) बीजगणितीय विविधता के सहसंयोजनों में हॉज संरचना के एनालॉग के अस्तित्व से होगा। नवीन विशेषता यह है कि सामान्य वर्ग की nवीं सहसंरचना ऐसी दिखती है मानो इसमें विभिन्न प्रभाव के टुकड़े हों। इसने अलेक्जेंडर ग्रोथेंडिक को उनके उद्देश्यों के अनुमानित सिद्धांत की ओर प्रेरित किया और हॉज सिद्धांत के विस्तार की खोज के लिए प्रेरित किया, जिसकी परिणति पियरे डेलिग्ने के काम में हुई। उन्होंने मिश्रित हॉज संरचना की धारणा पेश की, उनके साथ काम करने के लिए तकनीक विकसित की, उनका निर्माण दिया (हेसुके हिरोनका के विलक्षणताओं के संकल्प के आधार पर) और उन्हें L-एडिक सह-समरूपता पर प्रभाव से जोड़ा, जो वेइल अनुमानों के अंतिम भाग को सिद्ध करता है।
वक्रों का उदाहरण
परिभाषा को प्रेरित करने के लिए, दो गैर-एकवचन घटकों से युक्त एक कम करने योग्य जटिल बीजगणितीय वक्र X के स्तिथि पर विचार करें, और , जो बिंदुओं पर अनुप्रस्थ रूप से प्रतिच्छेद करता है और . इसके अतिरिक्त, मान लें कि घटक सघन नहीं हैं, लेकिन बिंदुओं को जोड़कर उन्हें सघन किया जा सकता है . वक्र इस समूह में तीन प्रकार के एक-चक्र हैं। सबसे पहले, तत्व हैं पंचर के चारों ओर छोटे लूप का प्रतिनिधित्व करना . फिर तत्व हैं जो प्रत्येक घटक के कॉम्पेक्टिफिकेशन (गणित) की पहली होमोलॉजी से आ रहे हैं। चक्र में () इस घटक के संघनन में एक चक्र के अनुरूप, विहित नहीं है: इन तत्वों की अवधि मॉड्यूलो द्वारा निर्धारित की जाती है . अंत में, मॉड्यूलो पहले दो प्रकार, समूह एक संयोजक चक्र द्वारा उत्पन्न होता है जो से जाता है को घटक में पथ के साथ और दूसरे घटक में पथ के साथ वापस आता है . इससे पता चलता है बढ़ते हुए निस्पंदन को स्वीकार करता है
जिसके क्रमिक भागफल Wn/Wn−1 पूर्ण वर्गों के सहसंयोजन से उत्पन्न होते हैं, इसलिए अलग-अलग प्रभाव के बावजूद (अविकृत) हॉज संरचनाओं को स्वीकार करते हैं। आगे के उदाहरण A नाइव गाइड टू मिक्स्ड हॉज सिद्धांत में पाए जा सकते हैं।[3]
मिश्रित हॉज संरचना की परिभाषा
एबेलियन समूह पर मिश्रित हॉज संरचना में जटिल वेक्टर स्पेस H पर सीमित घटती निस्पंदन Fp ( की जटिलता, जिसे हॉज निस्पंदन कहा जाता है) और तर्कसंगत वेक्टर अंतरिक्ष (प्राप्त) पर एक सीमित बढ़ती निस्पंदन Wi सम्मिलित है। स्केलर को तर्कसंगत संख्याओं तक विस्तारित करके), जिसे प्रभाव निस्पंदन कहा जाता है, इस आवश्यकता के अधीन है कि प्रभाव निस्पंदन के संबंध में मुख्यालय के n-वें संबंधित वर्गीकृत भागफल, इसके जटिलीकरण पर F द्वारा प्रेरित निस्पंदन के साथ, सभी पूर्णांक n के लिए प्रभाव n की एक अविकृत हॉज संरचना है। यहां प्रेरित निस्पंदन चालू है
द्वारा परिभाषित किया गया है
कोई मिश्रित हॉज संरचनाओं के रूपवाद की धारणा को परिभाषित कर सकता है, जिसे निस्पंदन F और W के साथ संगत होना होगा और निम्नलिखित साबित करना होगा:
- 'प्रमेय.' मिश्रित हॉज संरचनाएं एबेलियन श्रेणी बनाती हैं। इस श्रेणी में कर्नेल और कोकर्नेल, प्रेरित निस्पंदन के साथ वेक्टर रिक्त स्थान की श्रेणी में सामान्य कर्नेल और कोकर्नेल के साथ मेल खाते हैं।
कॉम्पैक्ट काहलर मैनिफोल्ड की कुल कोहोमोलॉजी में एक मिश्रित हॉज संरचना होती है, जहां प्रभाव निस्पंदन Wn का एनवां स्थान n से कम या उसके बराबर डिग्री के कोहोमोलॉजी समूहों (तर्कसंगत गुणांक के साथ) का प्रत्यक्ष योग है। इसलिए, कोई कॉम्पैक्ट, जटिल स्तिथि में शास्त्रीय हॉज सिद्धांत के बारे में सोच सकता है, जो जटिल कोहोलॉजी समूह पर दोहरी ग्रेडिंग प्रदान करता है, जो बढ़ते निस्पंदन एफपी और घटते निस्पंदन डब्ल्यूएन को परिभाषित करता है जो एक निश्चित तरीके से संगत हैं। सामान्य तौर पर, कुल कोहोमोलॉजी स्पेस में अभी भी ये दो निस्पंदन हैं, लेकिन वे अब प्रत्यक्ष योग अपघटन से नहीं आते हैं। अविकृत हॉज संरचना की तीसरी परिभाषा के संबंध में, कोई यह कह सकता है कि समूह की क्रिया का उपयोग करके मिश्रित हॉज संरचना का वर्णन नहीं किया जा सकता है। डेलिग्ने की एक महत्वपूर्ण अंतर्दृष्टि यह है कि मिश्रित स्तिथि में एक अधिक जटिल गैर-अनुवांशिक प्रोएलजेब्रिक समूह होता है जिसका उपयोग टैनाकियन औपचारिकता का उपयोग करके समान प्रभाव के लिए किया जा सकता है।
इसके अलावा, (मिश्रित) हॉज संरचनाओं की श्रेणी टेंसर उत्पाद की एक अच्छी धारणा को स्वीकार करती है, जो कि वर्गों के उत्पाद के साथ-साथ आंतरिक होम और दोहरी वस्तु की संबंधित अवधारणाओं के अनुरूप होती है, जो इसे तन्नाकियन श्रेणी में बनाती है। तन्नाका-क्रेन दर्शन के अनुसार, यह श्रेणी एक निश्चित समूह के परिमित-आयामी प्रतिनिधित्व की श्रेणी के बराबर है, जो डेलिग्ने, मिल्ने और एट अल। स्पष्ट रूप से वर्णन किया गया है, डेलिग्ने और मिल्ने (1982) [4] और डेलिग्ने (1994) देखें। इस समूह का विवरण काप्रानोव (2012) द्वारा अधिक ज्यामितीय शब्दों में दोहराया गया था। तर्कसंगत अविकृत ध्रुवीकरण योग्य हॉज संरचनाओं के लिए संबंधित (बहुत अधिक सम्मिलित) विश्लेषण पैट्रिकिस (2016) द्वारा किया गया था।
कोहोलॉजी में मिश्रित हॉज संरचना (डेलिग्ने का प्रमेय)
डेलिग्ने ने साबित किया है कि एच्छिक बीजगणितीय वर्ग के nवें कोहोमोलॉजी समूह में एक कैनोनिकल मिश्रित हॉज संरचना है। यह संरचना कार्यात्मक है और वर्गों के उत्पादों (कुनेथ आइसोमोर्फिज्म) और सह-समरूपता में उत्पाद के साथ संगत है।
प्रमाण में मोटे तौर पर दो भाग होते हैं, जिसमें गैर-संक्षिप्तता और विलक्षणताओं का ध्यान रखा जाता है। दोनों भाग विलक्षणता के संकल्प (हिरोनाका के कारण) का आवश्यक रूप से उपयोग करते हैं। एकवचन स्तिथि में, वर्गों को सरल योजनाओं द्वारा प्रतिस्थापित किया जाता है, जिससे अधिक जटिल होमोलॉजिकल बीजगणित होता है, और कॉम्प्लेक्स पर हॉज संरचना की एक तकनीकी धारणा (कोहोमोलॉजी के विपरीत) का उपयोग किया जाता है।
उद्देश्यों के सिद्धांत का उपयोग करते हुए, तर्कसंगत गुणांक वाले कोहोमोलॉजी पर प्रभाव निस्पंदन को अभिन्न गुणांक वाले एक में परिष्कृत करना संभव है।[5]
उदाहरण
- टेट-हॉज संरचना अंतर्निहित मॉड्यूल वाली हॉज संरचना है जो ( का उपसमूह) द्वारा दी गई है, के साथ। इसलिए यह अविकृत है परिभाषा के अनुसार प्रभाव -2 और यह समरूपता तक प्रभाव -2 की अद्वितीय 1-आयामी अविकृत हॉज संरचना है। अधिक सामान्यतः, इसकी nवीं टेंसर शक्ति को द्वारा दर्शाया जाता है; यह 1-आयामी है और इसका प्रभाव −2n अविकृत है।
- कॉम्पैक्ट काहलर मैनिफोल्ड के सह-समरूपता में हॉज संरचना होती है, और nवाँ सह-समरूपता समूह प्रभाव n से अविकृत होता है।
- जटिल वर्ग (संभवतः एकवचन या गैर-उचित) की कोहोलॉजी में मिश्रित हॉज संरचना होती है। इसे डेलिग्ने (1971), डेलिग्ने (1971ए) और सामान्य तौर पर डेलिग्ने (1974) द्वारा पूर्ण वर्गों के लिए दिखाया गया था।
- सामान्य क्रॉसिंग विलक्षणताओं के साथ प्रोजेक्टिव वर्ग के लिए, विकृत E2-पेज के साथ वर्णक्रमीय अनुक्रम होता है जो इसकी सभी मिश्रित हॉज संरचनाओं की गणना करता है। E1-पेज में एक सरल सेट से आने वाले अंतर के साथ स्पष्ट शब्द हैं।[6]
- कोई भी पूर्ण वर्ग X सामान्य क्रॉसिंग विभाजक के पूरक के साथ पूर्ण कॉम्पैक्टिफिकेशन स्वीकार करती है। X के कोहोलॉजी पर स्पष्ट रूप से मिश्रित हॉज संरचना का वर्णन करने के लिए संबंधित लघुगणकीय रूप का उपयोग किया जा सकता है।[7]
- पूर्ण प्रक्षेप्य हाइपरसतह के लिए हॉज संरचना डिग्री का ग्रिफिथ्स द्वारा अपने पीरियड समाकल ऑफ बीजगणितीय मैनिफोल्ड्स पेपर में स्पष्ट रूप से काम किया गया था। अगर हाइपरसतह को परिभाषित करने वाला बहुपद है फिर श्रेणीबद्ध जैकोबियन आदर्श के मध्य सहसंयोजन की सारी जानकारी सम्मिलित है . वह ऐसा दिखाता हैउदाहरण के लिए, द्वारा दी गई K3 सतह पर विचार करें , इस तरह और . फिर, श्रेणीबद्ध जैकोबियन अंगूठी हैफिर आदिम सह-समरूपता समूहों के लिए समरूपता पढ़ेंइस तरहध्यान दें जो द्वारा फैलाया गया सदिश समष्टि हैजो कि 19-आयामी है। लेफ्शेट्ज़ वर्ग [एल] द्वारा दिए गए में एक अतिरिक्त वेक्टर है। लेफ्शेट्ज़ हाइपरप्लेन प्रमेय और हॉज द्वंद्व से, शेष कोहोमोलॉजी में है जैसा कि 1-आयामी है। इसलिए हॉज डायमंड प्रदर्शित करता है
1 0 0 1 20 1 0 0 1 - हम किसी डिग्री के जीनस को सत्यापित करने के लिए पिछले समरूपता का भी उपयोग कर सकते हैं समतल वक्र. तब से एक चिकना वक्र है और एह्रेसमैन फ़िब्रेशन प्रमेय गारंटी देता है कि जीनस का हर दूसरा चिकना वक्र है भिन्नरूपी है, हमारे पास वह जीनस है तो वही। तो, जैकोबियन रिंग के श्रेणीबद्ध भाग के साथ आदिम सह-समरूपता के समरूपता का उपयोग करते हुए, हम इसे देखते हैं इसका तात्पर्य यह है कि आयाम हैजैसा वांछित
- पूर्ण प्रतिच्छेदन के लिए हॉज संख्याएँ भी आसानी से गणना योग्य हैं: फ्रेडरिक हिरज़ेब्रुच द्वारा पाया गया एक संयोजन सूत्र है।[8]
अनुप्रयोग
हॉज संरचना और मिश्रित हॉज संरचना की धारणाओं पर आधारित मशीनरी लेक्जेंडर ग्रोथेंडिक द्वारा परिकल्पित उद्देश्यों के अभी भी बड़े पैमाने पर अनुमानित सिद्धांत का एक हिस्सा बनाती है। नॉनसिंगुलर बीजगणितीय वर्ग सर्गेई गेलफैंड और यूरी मनिन ने 1988 के आसपास अपने होमोलॉजिकल अलजेब्रा के तरीकों में टिप्पणी की, कि अन्य कोहोमोलॉजी समूहों पर काम करने वाली गैलोज़ समरूपता के विपरीत, "हॉज समरूपता" की उत्पत्ति बहुत रहस्यमय है, हालांकि औपचारिक रूप से, वे डे राम कोहोमोलॉजी पर काफी सरल समूह की कार्रवाई के माध्यम से व्यक्त किए जाते हैं। तब से, दर्पण समरूपता की खोज और गणितीय सूत्रीकरण के साथ रहस्य गहन हो गया है।
हॉज संरचना की भिन्नता
हॉज संरचना का रूपांतर (ग्रिफिथ्स (1968), ग्रिफिथ्स (1968ए), ग्रिफिथ्स (1970)) जटिल मैनिफोल्ड X द्वारा मानकीकृत हॉज संरचनाओं का एक परिवार है। अधिक सटीक रूप से एक जटिल मैनिफ़ोल्ड पर वज़न n की हॉज संरचना का एक रूपांतर एक्स में X पर अंतिम रूप से उत्पन्न एबेलियन समूहों का एक स्थानीय स्थिर शीफ S सम्मिलित है, साथ में S ⊗ OX पर घटते हॉज निस्पंदन F के साथ, निम्नलिखित दो शर्तों के अधीन:
- निस्पंदन शीफ एस के प्रत्येक डंठल पर प्रभाव n की हॉज संरचना उत्पन्न करता है।
- ('ग्रिफ़िथ ट्रांसवर्सलिटी') S ⊗ OX पर प्राकृतिक संबंध में है।
यहां S ⊗ OX पर प्राकृतिक (फ्लैट) कनेक्शन S पर फ्लैट कनेक्शन और OX पर फ्लैट कनेक्शन d से प्रेरित है, और OX, X पर होलोमोर्फिक फ़ंक्शन का शीफ है, और , X पर 1-फॉर्म का शीफ है। यह प्राकृतिक समतल संपर्क एक गॉस-मैनिन संपर्क है और इसे पिकार्ड-फुच्स समीकरण द्वारा वर्णित किया जा सकता है।
मिश्रित हॉज संरचना की भिन्नता को इसी तरह से परिभाषित किया जा सकता है, ग्रेडिंग या निस्पंदन W को S में जोड़कर। विशिष्ट उदाहरण बीजीय आकारिकी से पाए जा सकते हैं। उदाहरण के लिए,
फाइबर है
जो जीनस 10 के चिकने समतल वक्र हैं और विलक्षण वक्र पर पतित हो जाता है फिर, कोहोमोलोजी समाप्त जाती है।
मिश्रित हॉज संरचनाओं की विभिन्नताएँ दीजिए।
हॉज मॉड्यूल
हॉज मॉड्यूल जटिल मैनिफोल्ड पर हॉज संरचनाओं की भिन्नता का सामान्यीकरण है। उन्हें अनौपचारिक रूप से कई गुना पर हॉज संरचनाओं के ढेर की तरह सोचा जा सकता है; सैटो (1989) की सटीक परिभाषा बल्कि तकनीकी और जटिल है। मिश्रित हॉज मॉड्यूल और विलक्षणताओं के साथ कई गुना के सामान्यीकरण हैं।
प्रत्येक पूर्ण जटिल वर्ग के लिए, इसके साथ जुड़े मिश्रित हॉज मॉड्यूल की एबेलियन श्रेणी है। ये औपचारिक रूप से शीव्स की श्रेणियों की तरह व्यवहार करते हैं; उदाहरण के लिए, मैनिफोल्ड्स के बीच आकारिकी f फ़ैक्टर को प्रेरित करती है f∗, f*, f!, f मिश्रित हॉज मॉड्यूल के बीच (व्युत्पन्न श्रेणियाँ) शीव्स के समान है।
यह भी देखें
- मिश्रित हॉज संरचना
- हॉज अनुमान
- जैकोबियन आदर्श
- हॉज-टेट संरचना, हॉज संरचनाओं का p-एडिक एनालॉग।
टिप्पणियाँ
- ↑ In terms of spectral sequences, see homological algebra, Hodge fitrations can be described as the following:
- ↑ More precisely, let S be the two-dimensional commutative real algebraic group defined as the Weil restriction of the multiplicative group from to in other words, if A is an algebra over then the group S(A) of A-valued points of S is the multiplicative group of Then is the group of non-zero complex numbers.
- ↑ Durfee, Alan (1981). "मिश्रित हॉज सिद्धांत के लिए एक अनुभवहीन मार्गदर्शिका". Complex Analysis of Singularities: 48–63. hdl:2433/102472.
- ↑ The second article titled Tannakian categories by Deligne and Milne concentrated to this topic.
- ↑ Gillet, Henri; Soulé, Christophe (1996). "वंश, उद्देश्य और के-सिद्धांत". Journal für die Reine und Angewandte Mathematik. 1996 (478): 127–176. arXiv:alg-geom/9507013. Bibcode:1995alg.geom..7013G. doi:10.1515/crll.1996.478.127. MR 1409056. S2CID 16441433., section 3.1
- ↑ Jones, B.F., "Deligne's Mixed Hodge Structure for Projective Varieties with only Normal Crossing Singularities" (PDF), Hodge Theory Working Seminar-Spring 2005
- ↑ Nicolaescu, Liviu, "Mixed Hodge Structures on Smooth Algebraic Varieties" (PDF), Hodge Theory Working Seminar-Spring 2005
- ↑ "संपूर्ण चौराहों का हॉज हीरा". Stack Exchange. December 14, 2013.
परिचयात्मक संदर्भ
- Debarre, Olivier, Periods and Moduli
- Arapura, Donu, Complex Algebraic Varieties and their Cohomology (PDF), pp. 120–123, archived from the original (PDF) on 2020-01-04 (शीफ़ सह-समरूपता का उपयोग करके हॉज संख्याओं की गणना के लिए उपकरण देता है)
- मिश्रित हॉज सिद्धांत के लिए एक सरल मार्गदर्शिका
- Dimca, Alexandru (1992). हाइपरसर्फेस की विलक्षणताएं और टोपोलॉजी. Universitext. New York: Springer-Verlag. pp. 240, 261. doi:10.1007/978-1-4612-4404-2. ISBN 0-387-97709-0. MR 1194180. S2CID 117095021. (एक भारित समरूप बहुपद के एफ़िन मिल्नोर मानचित्र के मिश्रित हॉज संख्याओं के लिए एक सूत्र और जनरेटर देता है, और एक भारित प्रक्षेप्य स्थान में भारित सजातीय बहुपदों के पूरक के लिए एक सूत्र भी देता है।)
सर्वेक्षण लेख
- Arapura, Donu (2006), Mixed Hodge Structures Associated to Geometric Variations (PDF), arXiv:math/0611837, Bibcode:2006math.....11837A
संदर्भ
- Deligne, Pierre (1971b), Travaux de Griffiths, Sem. Bourbaki Exp. 376, Lect. notes in math. Vol 180, pp. 213–235
- Deligne, Pierre (1971), "Théorie de Hodge. I" (PDF), Actes du Congrès International des Mathématiciens (Nice, 1970), vol. 1, Gauthier-Villars, pp. 425–430, MR 0441965, archived from the original (PDF) on 2015-04-02 This constructs a mixed Hodge structure on the cohomology of a complex variety.
- Deligne, Pierre (1971a), Théorie de Hodge. II., Inst. Hautes Études Sci. Publ. Math. No. 40, pp. 5–57, MR 0498551 This constructs a mixed Hodge structure on the cohomology of a complex variety.
- Deligne, Pierre (1974), Théorie de Hodge. III., Inst. Hautes Études Sci. Publ. Math. No. 44, pp. 5–77, MR 0498552 This constructs a mixed Hodge structure on the cohomology of a complex variety.
- Deligne, Pierre (1994), "Structures de Hodge mixtes réelles", Motives (Seattle, WA, 1991), Part 1, Proceedings of Symposia in Pure Mathematics, vol. 55, Providence, RI: American Mathematical Society, pp. 509–514, MR 1265541
- Deligne, Pierre; Milne, James (1982), "Tannakian categories", Hodge Cycles, Motives, and Shimura Varieties by Pierre Deligne, James S. Milne, Arthur Ogus, Kuang-yen Shih, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, pp. 1–414. An annotated version of this article can be found on J. Milne's homepage.
- Griffiths, Phillip (1968), "Periods of integrals on algebraic manifolds I (Construction and Properties of the Modular Varieties)", American Journal of Mathematics, 90 (2): 568–626, doi:10.2307/2373545, JSTOR 2373545
- Griffiths, Phillip (1968a), "Periods of integrals on algebraic manifolds II (Local Study of the Period Mapping)", American Journal of Mathematics, 90 (3): 808–865, doi:10.2307/2373485, JSTOR 2373485
- Griffiths, Phillip (1970), "Periods of integrals on algebraic manifolds III. Some global differential-geometric properties of the period mapping.", Publications Mathématiques de l'IHÉS, 38: 228–296, doi:10.1007/BF02684654, S2CID 11443767
- Kapranov, Mikhail (2012), "Real mixed Hodge structures", Journal of Noncommutative Geometry, 6 (2): 321–342, arXiv:0802.0215, doi:10.4171/jncg/93, MR 2914868, S2CID 56416260
- Ovseevich, Alexander I. (2001) [1994], "Hodge structure", Encyclopedia of Mathematics, EMS Press
- Patrikis, Stefan (2016), "Mumford-Tate groups of polarizable Hodge structures", Proceedings of the American Mathematical Society, 144 (9): 3717–3729, arXiv:1302.1803, doi:10.1090/proc/13040, MR 3513533, S2CID 40142493
- Saito, Morihiko (1989), Introduction to mixed Hodge modules. Actes du Colloque de Théorie de Hodge (Luminy, 1987)., Astérisque No. 179–180, pp. 145–162, MR 1042805
- Schnell, Christian (2014), An Overview of Morihiko Saito's Theory of Mixed Hodge Modules (PDF), arXiv:1405.3096
- Steenbrink, Joseph H.M. (2001) [1994], "Variation of Hodge structure", Encyclopedia of Mathematics, EMS Press