रेले भागफल
गणित में, किसी दिए गए सम्मिश्र हर्मिटियन आव्यूह और अशून्य सदिश (ज्यामिति) के लिए रेले भागफल[1] (/ˈreɪ.li/) को इस प्रकार परिभाषित किया गया है:[2][3]
रेले भागफल का उपयोग न्यूनतम-अधिकतम प्रमेय में सभी eigenvalues के सटीक मान प्राप्त करने के लिए किया जाता है। इसका उपयोग आइजेनवेक्टर सन्निकटन से आइगेनवैल्यू सन्निकटन प्राप्त करने के लिए eigenvalue एल्गोरिथ्म (जैसे कि रेले भागफल पुनरावृत्ति) में भी किया जाता है।
रेले भागफल की सीमा (किसी भी मैट्रिक्स के लिए, जरूरी नहीं कि हर्मिटियन) को संख्यात्मक सीमा कहा जाता है और इसमें इसका स्पेक्ट्रम_(कार्यात्मक_विश्लेषण) शामिल होता है। जब मैट्रिक्स हर्मिटियन होता है, तो संख्यात्मक त्रिज्या वर्णक्रमीय मानदंड के बराबर होती है। अभी भी कार्यात्मक विश्लेषण में, वर्णक्रमीय त्रिज्या के रूप में जाना जाता है। के सन्दर्भ में -बीजगणित या बीजगणितीय क्वांटम यांत्रिकी, वह कार्यरेले-रिट्ज भागफल को जोड़ता है निश्चित के लिएऔरबीजगणित के माध्यम से परिवर्तन को बीजगणित की सदिश अवस्था के रूप में संदर्भित किया जाएगा।
क्वांटम यांत्रिकी में, रेले भागफल ऑपरेटर के अनुरूप अवलोकनीय का अपेक्षित मूल्य (क्वांटम यांत्रिकी) देता है ऐसी प्रणाली के लिए जिसका राज्य दिया गया है.
यदि हम जटिल मैट्रिक्स को ठीक करते हैं, फिर परिणामी रेले भागफल मानचित्र (के फ़ंक्शन के रूप में माना जाता है) पूर्णतः निर्धारित करता हैध्रुवीकरण पहचान#कॉम्प्लेक्स संख्याओं के माध्यम से; वास्तव में, यदि हम अनुमति दें तो भी यह सत्य हैगैर-हर्मिटियन होना। (हालाँकि, यदि हम अदिशों के क्षेत्र को वास्तविक संख्याओं तक सीमित रखते हैं, तो रेले भागफल केवल सममित मैट्रिक्स भाग को निर्धारित करता है.)
हर्मिटियन एम के लिए सीमाएं
जैसा कि परिचय में कहा गया है, किसी भी वेक्टर x के लिए, के पास है , कहाँ क्रमशः सबसे छोटे और सबसे बड़े eigenvalues हैं . यह देखने के तुरंत बाद है कि रेले भागफल एम के eigenvalues का भारित औसत है:
तथ्य यह है कि भागफल eigenvalues का भारित औसत है, इसका उपयोग दूसरे, तीसरे, ... सबसे बड़े eigenvalues की पहचान करने के लिए किया जा सकता है। होने देना घटते क्रम में eigenvalues हो। अगर और ओर्थोगोनल होने के लिए बाध्य है , किस स्थिति में , तब अधिकतम मूल्य है , जो कब प्राप्त होता है .
सहप्रसरण आव्यूहों का विशेष मामला
अनुभवजन्य सहप्रसरण मैट्रिक्स उत्पाद के रूप में प्रस्तुत किया जा सकता है डेटा मैट्रिक्स का (बहुभिन्नरूपी आँकड़े) इसके स्थानान्तरण द्वारा पूर्व-गुणा किया गया . सकारात्मक अर्ध-निश्चित मैट्रिक्स होने के नाते, इसमें गैर-नकारात्मक eigenvalues, और ऑर्थोगोनल (या ऑर्थोगोनलाइज़ेबल) eigenvectors हैं, जिन्हें निम्नानुसार प्रदर्शित किया जा सकता है।
सबसे पहले, कि eigenvalues गैर-नकारात्मक हैं:
अब यह स्थापित करने के लिए कि रेले भागफल को सबसे बड़े eigenvalue वाले eigenvector द्वारा अधिकतम किया गया है, मनमाना वेक्टर को विघटित करने पर विचार करें eigenvectors के आधार पर :
यदि वेक्टर अधिकतम , फिर कोई भी गैर-शून्य अदिश गुणज अधिकतम भी करता है , इसलिए समस्या को अधिकतमीकरण के लैग्रेंज गुणक तक कम किया जा सकता है उस बाध्यता के तहत .
परिभाषित करना: . यह तब रैखिक कार्यक्रम बन जाता है, जो हमेशा डोमेन के किसी कोने पर अपनी अधिकतम सीमा प्राप्त करता है। अधिकतम अंक होगा और सभी के लिए (जब eigenvalues को घटते परिमाण के अनुसार क्रमित किया जाता है)।
इस प्रकार, रेले भागफल को सबसे बड़े eigenvalue वाले eigenvector द्वारा अधिकतम किया जाता है।
लैग्रेंज मल्टीप्लायरों का उपयोग करके सूत्रीकरण
वैकल्पिक रूप से, इस परिणाम पर लैग्रेंज मल्टीप्लायरों की विधि द्वारा पहुंचा जा सकता है। पहला भाग यह दिखाना है कि स्केलिंग के तहत भागफल स्थिर है , कहाँ अदिश राशि है
कहाँ लैग्रेंज गुणक है। के स्थिर बिंदु पर घटित होता है
इसलिए, eigenvectors का रेले भागफल के महत्वपूर्ण बिंदु और उनके संबंधित स्वदेशी मान हैं के स्थिर मान हैं . यह संपत्ति प्रमुख घटकों के विश्लेषण और विहित सहसंबंध का आधार है।
स्टर्म-लिउविल सिद्धांत में उपयोग
स्टर्म-लिउविले सिद्धांत रैखिक ऑपरेटर की कार्रवाई से संबंधित है
सामान्यीकरण
- मैट्रिक्स के दिए गए जोड़े (ए, बी) और दिए गए गैर-शून्य वेक्टर x के लिए, 'सामान्यीकृत रेले भागफल' को इस प्रकार परिभाषित किया गया है: सामान्यीकृत रेले भागफल को रेले भागफल तक कम किया जा सकता है परिवर्तन के माध्यम से कहाँ हर्मिटियन सकारात्मक-निश्चित मैट्रिक्स बी का चोल्स्की अपघटन है।
- गैर-शून्य सदिशों की दी गई जोड़ी (x, y) और दिए गए हर्मिटियन मैट्रिक्स H के लिए, 'सामान्यीकृत रेले भागफल' को इस प्रकार परिभाषित किया जा सकता है: जो R(H,x) के साथ मेल खाता है जब x = y। क्वांटम यांत्रिकी में, इस मात्रा को मैट्रिक्स तत्व या कभी-कभी संक्रमण आयाम कहा जाता है।
यह भी देखें
- मूल्यों का क्षेत्र
- न्यूनतम-अधिकतम प्रमेय
- कंपन विश्लेषण में रेले का भागफल
- डिरिचलेट आइजेनवैल्यू
संदर्भ
- ↑ Also known as the Rayleigh–Ritz ratio; named after Walther Ritz and Lord Rayleigh.
- ↑ Horn, R. A.; Johnson, C. A. (1985). मैट्रिक्स विश्लेषण. Cambridge University Press. pp. 176–180. ISBN 0-521-30586-1.
- ↑ Parlett, B. N. (1998). सममित आइगेनवेल्यू समस्या. Classics in Applied Mathematics. SIAM. ISBN 0-89871-402-8.
- ↑ Costin, Rodica D. (2013). "मध्यावधि नोट्स" (PDF). Mathematics 5102 Linear Mathematics in Infinite Dimensions, lecture notes. The Ohio State University.
अग्रिम पठन
- Shi Yu, Léon-Charles Tranchevent, Bart Moor, Yves Moreau, Kernel-based Data Fusion for Machine Learning: Methods and Applications in Bioinformatics and Text Mining, Ch. 2, Springer, 2011.
- मैट्रिक्स के दिए गए जोड़े (ए, बी) और दिए गए गैर-शून्य वेक्टर x के लिए, 'सामान्यीकृत रेले भागफल' को इस प्रकार परिभाषित किया गया है: सामान्यीकृत रेले भागफल को रेले भागफल तक कम किया जा सकता है परिवर्तन के माध्यम से कहाँ हर्मिटियन सकारात्मक-निश्चित मैट्रिक्स बी का चोल्स्की अपघटन है।
- गैर-शून्य सदिशों की दी गई जोड़ी (x, y) और दिए गए हर्मिटियन मैट्रिक्स H के लिए, 'सामान्यीकृत रेले भागफल' को इस प्रकार परिभाषित किया जा सकता है: जो R(H,x) के साथ मेल खाता है जब x = y। क्वांटम यांत्रिकी में, इस मात्रा को मैट्रिक्स तत्व या कभी-कभी संक्रमण आयाम कहा जाता है।
यह भी देखें
- मूल्यों का क्षेत्र
- न्यूनतम-अधिकतम प्रमेय
- कंपन विश्लेषण में रेले का भागफल
- डिरिचलेट आइजेनवैल्यू
संदर्भ
- ↑ Also known as the Rayleigh–Ritz ratio; named after Walther Ritz and Lord Rayleigh.
- ↑ Horn, R. A.; Johnson, C. A. (1985). मैट्रिक्स विश्लेषण. Cambridge University Press. pp. 176–180. ISBN 0-521-30586-1.
- ↑ Parlett, B. N. (1998). सममित आइगेनवेल्यू समस्या. Classics in Applied Mathematics. SIAM. ISBN 0-89871-402-8.
- ↑ Costin, Rodica D. (2013). "मध्यावधि नोट्स" (PDF). Mathematics 5102 Linear Mathematics in Infinite Dimensions, lecture notes. The Ohio State University.
अग्रिम पठन
- Shi Yu, Léon-Charles Tranchevent, Bart Moor, Yves Moreau, Kernel-based Data Fusion for Machine Learning: Methods and Applications in Bioinformatics and Text Mining, Ch. 2, Springer, 2011.