दिशात्मक घटक विश्लेषण

From Vigyanwiki
Revision as of 08:44, 3 August 2023 by alpha>RanveerS

दिशात्मक घटक विश्लेषण (डीसीए)[1][2][3] ऐतिहासिक जलवायु अवलोकन जैसे अंतरिक्ष-समय डेटा-सेट में परिवर्तनशीलता के प्रतिनिधि पैटर्न की पहचान करने के लिए जलवायु विज्ञान में उपयोग की जाने वाली सांख्यिकीय विधि है,[1]सामूहिक पूर्वानुमान[2]या जलवायु समूह।[3]

पहला डीसीए पैटर्न मौसम या जलवायु परिवर्तनशीलता का पैटर्न है जो घटित होने की संभावना है (संभावना फ़ंक्शन का उपयोग करके मापा जाता है) और इसका बड़ा प्रभाव होता है ( निर्दिष्ट रैखिक प्रभाव फ़ंक्शन के लिए, और कुछ गणितीय स्थितियों को देखते हुए: नीचे देखें)।

पहला डीसीए पैटर्न पहले प्रमुख घटक विश्लेषण पैटर्न के विपरीत है, जिसके घटित होने की संभावना है, लेकिन इसका बड़ा प्रभाव नहीं हो सकता है, और प्रभाव फ़ंक्शन के ग्रेडियेंट से प्राप्त पैटर्न के साथ, जिसका बड़ा प्रभाव होता है, लेकिन घटित होने की संभावना नहीं है।

डीसीए जलवायु अनुसंधान में प्रयुक्त अन्य पैटर्न पहचान विधियों से भिन्न है, जैसे अनुभवजन्य ऑर्थोगोनल फ़ंक्शन,[4]घुमाए गए ईओएफ[5]और विस्तारित ईओएफ[6]इसमें यह बाहरी वेक्टर, प्रभाव की प्रवणता को ध्यान में रखता है।

डीसीए एन्सेम्बल पूर्वानुमान से बड़े एन्सेम्बल को कम करने का तरीका प्रदान करता है[2]या जलवायु पहनावा[3]सिर्फ दो पैटर्न के लिए. पहला पैटर्न संयोजन माध्य है, और दूसरा पैटर्न डीसीए पैटर्न है, जो संयोजन माध्य के आसपास परिवर्तनशीलता को तरह से दर्शाता है जो प्रभाव को ध्यान में रखता है। डीसीए उन अन्य तरीकों से विरोधाभासी है जो संयोजनों को कम करने के लिए प्रस्तावित किए गए हैं[7][8]इसमें समूह की संरचना के अलावा प्रभाव को भी ध्यान में रखा जाता है।

सिंहावलोकन

इनपुट

DCA की गणना दो इनपुट से की जाती है:[1][2][3]* मौसम या जलवायु डेटा का बहुभिन्नरूपी डेटासेट, जैसे ऐतिहासिक जलवायु अवलोकन, या मौसम या जलवायु समूह

  • रैखिक प्रभाव फ़ंक्शन। रैखिक प्रभाव फ़ंक्शन फ़ंक्शन है जो स्थानिक पैटर्न में विभिन्न स्थानों पर मूल्यों के भारित योग के रूप में मौसम या जलवायु डेटा में प्रत्येक स्थानिक पैटर्न के लिए प्रभाव के स्तर को परिभाषित करता है। उदाहरण स्थानिक पैटर्न में औसत मान है। रैखिक प्रभाव फ़ंक्शन को गैर-रेखीय प्रभाव फ़ंक्शन की बहुभिन्नरूपी टेलर श्रृंखला में पहले पद के रूप में उत्पन्न किया जा सकता है।[3]


सूत्र

स्पेस-टाइम डेटा सेट पर विचार करें , जिसमें व्यक्तिगत स्थानिक पैटर्न वैक्टर शामिल हैं , जहां प्रत्येक व्यक्तिगत पैटर्न को माध्य शून्य और सहप्रसरण मैट्रिक्स के साथ बहुभिन्नरूपी सामान्य वितरण से एकल नमूने के रूप में माना जाता है .

हम स्थानिक पैटर्न के रैखिक प्रभाव फ़ंक्शन को इस प्रकार परिभाषित करते हैं , कहाँ स्थानिक भार का वेक्टर है।

पहला डीसीए पैटर्न सहप्रसरण मैट्रिक्स के संदर्भ में दिया गया है और वजन आनुपातिक अभिव्यक्ति द्वारा . [1][2][3]

फिर पैटर्न को आवश्यकतानुसार किसी भी लंबाई तक सामान्यीकृत किया जा सकता है।[1]


गुण

यदि मौसम या जलवायु डेटा को अण्डाकार रूप से वितरित किया जाता है (उदाहरण के लिए, बहुभिन्नरूपी सामान्य वितरण या बहुभिन्नरूपी टी-वितरण के रूप में वितरित किया जाता है) तो पहले DCA पैटर्न (DCA1) को निम्नलिखित गणितीय गुणों के साथ स्थानिक पैटर्न के रूप में परिभाषित किया गया है:

  • DCA1 प्रभाव के किसी दिए गए मान के लिए संभाव्यता घनत्व को अधिकतम करता है[1]* DCA1 संभाव्यता घनत्व के दिए गए मान के लिए प्रभाव को अधिकतम करता है[1]* DCA1 प्रभाव और संभाव्यता घनत्व के उत्पाद को अधिकतम करता है[3]* DCA1 सशर्त अपेक्षा है, प्रभाव के निश्चित स्तर से अधिक होने पर सशर्त[3]* DCA1 प्रभाव-भारित संयोजन माध्य है[3]* DCA1 में कोई भी संशोधन ऐसे पैटर्न को जन्म देगा जो या तो कम चरम होगा, या कम संभावना घनत्व होगा।

वर्षा उदाहरण

उदाहरण के लिए, वर्षा विसंगति डेटासेट में, कुल वर्षा विसंगति के रूप में परिभाषित प्रभाव मीट्रिक का उपयोग करते हुए, पहला डीसीए पैटर्न स्थानिक पैटर्न है जिसमें किसी दिए गए कुल वर्षा विसंगति के लिए उच्चतम संभावना घनत्व होता है। यदि दी गई कुल वर्षा विसंगति को बड़े मूल्य के लिए चुना जाता है, तो यह पैटर्न मीट्रिक के संदर्भ में चरम होने (यानी, कुल वर्षा की बड़ी मात्रा का प्रतिनिधित्व करने) को पैटर्न के संदर्भ में संभावित होने के साथ जोड़ता है, और इसलिए प्रतिनिधि चरम पैटर्न के रूप में उपयुक्त है।

पीसीए के साथ तुलना

प्रिंसिपल कंपोनेंट एनालिसिस (पीसीए) और डीसीए के बीच मुख्य अंतर हैं[1]* पीसीए केवल सहप्रसरण मैट्रिक्स का कार्य है, और पहले पीसीए पैटर्न को परिभाषित किया गया है ताकि स्पष्ट विचरण को अधिकतम किया जा सके

  • डीसीए सहप्रसरण मैट्रिक्स और वेक्टर दिशा (प्रभाव फ़ंक्शन का ग्रेडिएंट) का फ़ंक्शन है, और पहले डीसीए पैटर्न को परिभाषित किया गया है ताकि प्रभाव मीट्रिक के दिए गए मूल्य के लिए संभाव्यता घनत्व को अधिकतम किया जा सके।

परिणामस्वरूप, इकाई वेक्टर स्थानिक पैटर्न के लिए:

  • पहला पीसीए स्थानिक पैटर्न हमेशा उच्च स्पष्ट विचरण से मेल खाता है, लेकिन पतित मामलों को छोड़कर, प्रभाव मीट्रिक का मूल्य कम होता है (उदाहरण के लिए, कुल वर्षा विसंगति)।
  • पहला डीसीए स्थानिक पैटर्न हमेशा प्रभाव मीट्रिक के उच्च मूल्य से मेल खाता है, लेकिन पतित मामलों को छोड़कर, इसमें समझाए गए विचरण का कम मूल्य होता है

विकृत मामले तब घटित होते हैं जब पीसीए और डीसीए पैटर्न समान होते हैं।

इसके अलावा, पहले पीसीए पैटर्न को देखते हुए, डीसीए पैटर्न को स्केल किया जा सकता है ताकि:

  • स्केल किए गए डीसीए पैटर्न में पहले पीसीए पैटर्न के समान संभाव्यता घनत्व है, लेकिन उच्च प्रभाव, या
  • स्केल किए गए डीसीए पैटर्न का प्रभाव पहले पीसीए पैटर्न के समान है, लेकिन उच्च संभावना घनत्व है।

दो आयामी उदाहरण[1]

चित्र 1: दो आयामी उदाहरण में पीसीए (नीला) और डीसीए (लाल) वेक्टर।

चित्र 1 उदाहरण देता है, जिसे इस प्रकार समझा जा सकता है:

  • दो अक्ष दो स्थानों पर वार्षिक औसत वर्षा की विसंगतियों का प्रतिनिधित्व करते हैं, जिसमें आरेख के शीर्ष दाएं कोने की ओर उच्चतम कुल वर्षा विसंगति मान हैं।
  • दो स्थानों पर वर्षा विसंगतियों की संयुक्त परिवर्तनशीलता को द्विचर सामान्य वितरण के अनुरूप माना जाता है
  • दीर्घवृत्त इस द्विचर सामान्य से संभाव्यता घनत्व का एकल समोच्च दिखाता है, दीर्घवृत्त के अंदर उच्च मान के साथ
  • दीर्घवृत्त के केंद्र में लाल बिंदु दोनों स्थानों पर शून्य वर्षा विसंगतियों को दर्शाता है
  • नीला समानांतर-रेखा तीर दीर्घवृत्त के मुख्य अक्ष को दर्शाता है, जो पहला पीसीए स्थानिक पैटर्न वेक्टर भी है
  • इस मामले में, पीसीए पैटर्न को स्केल किया जाता है ताकि यह दीर्घवृत्त को छू सके
  • विकर्ण सीधी रेखा निरंतर सकारात्मक कुल वर्षा विसंगति की रेखा दिखाती है, जिसे कुछ चरम स्तर पर माना जाता है
  • लाल बिंदीदार रेखा वाला तीर पहला DCA पैटर्न दिखाता है, जो उस बिंदु की ओर इशारा करता है जिस पर विकर्ण रेखा दीर्घवृत्त की स्पर्शरेखा है
  • इस मामले में, DCA पैटर्न को स्केल किया जाता है ताकि यह दीर्घवृत्त को छू सके

इस आरेख से, DCA पैटर्न में निम्नलिखित गुण देखे जा सकते हैं:

  • विकर्ण रेखा पर सभी बिंदुओं में से, यह सबसे अधिक संभावना घनत्व वाला बिंदु है
  • दीर्घवृत्त पर सभी बिंदुओं में से, यह सबसे अधिक कुल वर्षा विसंगति वाला बिंदु है
  • इसमें पीसीए पैटर्न के समान संभाव्यता घनत्व है, लेकिन उच्च कुल वर्षा का प्रतिनिधित्व करता है (यानी, आरेख के शीर्ष दाएं कोने की ओर इंगित करता है)
  • डीसीए पैटर्न में कोई भी बदलाव या तो संभाव्यता घनत्व को कम कर देगा (यदि यह दीर्घवृत्त से बाहर चला जाता है) या कुल वर्षा विसंगति को कम कर देगा (यदि यह दीर्घवृत्त के साथ या अंदर जाता है)

इस मामले में पीसीए पैटर्न की कुल वर्षा विसंगति काफी छोटी है, क्योंकि दोनों स्थानों पर वर्षा विसंगतियों के बीच परस्पर संबंध हैं। परिणामस्वरूप, पहला पीसीए पैटर्न बड़े कुल वर्षा विसंगति वाले पैटर्न का अच्छा प्रतिनिधि उदाहरण नहीं है, जबकि पहला डीसीए पैटर्न है।

में आयाम दीर्घवृत्त दीर्घवृत्ताभ बन जाता है, विकर्ण रेखा बन जाती है आयामी तल, और पीसीए और डीसीए पैटर्न वेक्टर हैं आयाम.

अनुप्रयोग

जलवायु परिवर्तनशीलता के लिए आवेदन

डीसीए को ऐतिहासिक वर्षा परिवर्तनशीलता के जलवायु अनुसंधान इकाई डेटा-सेट पर लागू किया गया है[9]अमेरिका और चीन में वर्षा की चरम सीमा के सबसे संभावित पैटर्न को समझने के लिए।[1]


मौसम पूर्वानुमानों को एकत्रित करने के लिए आवेदन

डीसीए को मध्यम दूरी के मौसम पूर्वानुमान के लिए यूरोपीय केंद्र मीडियम-रेंज वेदर फोरकास्ट्स में लागू किया गया है ताकि एसेम्बली फोरकास्ट में अत्यधिक तापमान के सबसे संभावित पैटर्न की पहचान की जा सके।[2]


जलवायु मॉडल अनुमानों को एकत्रित करने के लिए आवेदन

अत्यधिक भविष्य की वर्षा के सबसे संभावित पैटर्न की पहचान करने के लिए डीसीए को जलवायु मॉडल अनुमानों को इकट्ठा करने के लिए लागू किया गया है।[3]


प्रथम डीसीए पैटर्न की व्युत्पत्ति[1]

स्पेस-टाइम डेटा-सेट पर विचार करें , जिसमें व्यक्तिगत स्थानिक पैटर्न वैक्टर शामिल हैं , जहां प्रत्येक व्यक्तिगत पैटर्न को माध्य शून्य और सहप्रसरण मैट्रिक्स के साथ बहुभिन्नरूपी सामान्य वितरण से एकल नमूने के रूप में माना जाता है .

के समारोह के रूप में , लॉग संभाव्यता घनत्व आनुपातिक है .

हम स्थानिक पैटर्न के रैखिक प्रभाव फ़ंक्शन को इस प्रकार परिभाषित करते हैं , कहाँ स्थानिक भार का वेक्टर है।

फिर हम उस स्थानिक पैटर्न को ढूंढना चाहते हैं जो रैखिक प्रभाव फ़ंक्शन के दिए गए मान के लिए संभाव्यता घनत्व को अधिकतम करता है। यह स्थानिक पैटर्न खोजने के बराबर है जो रैखिक प्रभाव फ़ंक्शन के दिए गए मान के लिए लॉग संभाव्यता घनत्व को अधिकतम करता है, जिसे हल करना थोड़ा आसान है।

यह प्रतिबंधित अधिकतमीकरण समस्या है, और इसे लैग्रेंज गुणक की विधि का उपयोग करके हल किया जा सकता है।

लैग्रेंजियन फ़ंक्शन द्वारा दिया गया है

द्वारा विभेद करना और शून्य पर सेट करने से समाधान मिलता है

ताकि सामान्यीकरण किया जा सके यूनिट वेक्टर देता है

यह पहला DCA पैटर्न है.

बाद के पैटर्न प्राप्त किए जा सकते हैं जो पहले के लिए ऑर्थोगोनल हैं, ऑर्थोनॉर्मल सेट बनाने और मैट्रिक्स फ़ैक्टराइज़ेशन के लिए विधि बनाने के लिए।

संदर्भ

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Jewson, S. (2020). "An Alternative to PCA for Estimating Dominant Patterns of Climate Variability and Extremes, with Application to U.S. and China Seasonal Rainfall". Atmosphere. 11 (4): 354. Bibcode:2020Atmos..11..354J. doi:10.3390/atmos11040354.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Scher, S.; Jewson, S.; Messori, G. (2021). "Robust Worst-Case Scenarios from Ensemble Forecasts". Weather and Forecasting. 36 (4): 1357–1373. Bibcode:2021WtFor..36.1357S. doi:10.1175/WAF-D-20-0219.1. S2CID 236300040.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Jewson, S.; Messori, G.; Barbato, G.; Mercogliano, P.; Mysiak, J.; Sassi, M. (2022). "Developing Representative Impact Scenarios From Climate Projection Ensembles, With Application to UKCP18 and EURO-CORDEX Precipitation". Journal of Advances in Modeling Earth Systems. 15 (1). doi:10.1029/2022MS003038. S2CID 254965361.
  4. Hannachi, A.; Jolliffe, I.; Stephenson, D. (2007). "Empirical orthogonal functions and related techniques in atmospheric science: A review". International Journal of Climatology. 27 (9): 1119. Bibcode:2007IJCli..27.1119H. doi:10.1002/joc.1499. S2CID 52232574.
  5. Mestas-Nunez, A. (2000). "Orthogonality properties of rotated empirical modes". International Journal of Climatology. 20 (12): 1509–1516. doi:10.1002/1097-0088(200010)20:12<1509::AID-JOC553>3.0.CO;2-Q.
  6. Fraedrich, K.; McBride, J.; Frank, W.; Wang, R. (1997). "Extended EOF Analysis of Tropical Disturbances: TOGA COARE". Journal of the Atmospheric Sciences. 41 (19): 2363. Bibcode:1997JAtS...54.2363F. doi:10.1175/1520-0469(1997)054<2363:EEAOTD>2.0.CO;2.
  7. Evans, J.; Ji, F.; Abramowitz, G.; Ekstrom, M. (2013). "Optimally choosing small ensemble members to produce robust climate simulations". Environmental Research Letters. 8 (4): 044050. Bibcode:2013ERL.....8d4050E. doi:10.1088/1748-9326/8/4/044050. S2CID 155021417.
  8. Herger, N.; Abramowitz, G.; Knutti, R.; Angelil, O.; Lehmann, K.; Sanderson, B. (2017). "Selecting a climate model subset to optimise key ensemble properties". Earth System Dynamics. 9: 135–151. doi:10.5194/esd-9-135-2018.
  9. Harris, I.; Jones, P.; Osborn, T.; Lister, D. (2013). "Updated high-resolution grids of monthly climatic observations— The CRU TS3.10 Dataset" (PDF). International Journal of Climatology. 34 (3): 623. Bibcode:2014IJCli..34..623H. doi:10.1002/joc.3711. S2CID 54866679.