संगत भुजाएँ और संगत कोण

From Vigyanwiki
Revision as of 08:00, 8 August 2023 by alpha>Ajays
नारंगी और हरा चतुर्भुज सर्वांगसम हैं; नीला उनके अनुरूप नहीं है। उस तरफ नारंगी और हरे रंग के मध्य सामंजस्य स्थापित किया गया है BC से मेल खाता है (सर्वांगसमता के इस स्थितियों में, लंबाई में सामान्तर है) JK, CD से मेल खाती है KL, DA से मेल खाती है LI, और AB से मेल खाती है IJ, जबकि कोण ∠C ( सामान्तर) कोण से मेल खाता है ∠K, ∠D से मेल खाती है ∠L, ∠A से मेल खाती है ∠I, और ∠B से मेल खाती है ∠J.

ज्यामिति में, सर्वांगसमता (ज्यामिति) और समानता (ज्यामिति) के परीक्षणों में बहुभुजों की संगत भुजाओं और संगत कोणों की तुलना करना सम्मिलित है। इन परीक्षणों में, एक बहुभुज में प्रत्येक किनारे (ज्यामिति) और प्रत्येक कोण को दूसरे बहुभुज में एक पक्ष या कोण के साथ जोड़ा जाता है, आसन्नता के क्रम को संरक्षित करने का ध्यान रखते हुए।[1]

उदाहरण के लिए, यदि एक बहुभुज में अनुक्रमिक भुजाएँ हैं a, b, c, d, और e और दूसरे की क्रमिक भुजाएँ हैं v, w, x, y, और z, और यदि b और w संगत भुजाएँ हैं, फिर भुजाएँ a (के बगल में b) किसी एक के अनुरूप होना चाहिए v या x (दोनों निकटवर्ती w). यदि a और v तब फिर एक दूसरे से मेल खाते हैं c से मेल खाती है x, d से मेल खाती है y, और e से मेल खाती है z; इसलिए iअनुक्रम का वां तत्व abcde से मेल खाता है iअनुक्रम का वां तत्व vwxyz के लिए i = 1, 2, 3, 4, 5. दूसरी ओर, यदि इसके अतिरिक्त b तदनुसार w अपने पास c तदनुसार v, फिर iवाँ तत्व abcde से मेल खाता है iविपरीत अनुक्रम का वां तत्व xwvzy.

सर्वांगसमता परीक्षण यह देखते हैं कि संगत भुजाओं के सभी जोड़े लंबाई में समान हों, यद्यपि त्रिभुज के स्थितियों को छोड़कर यह सर्वांगसमता स्थापित करने के लिए पर्याप्त नहीं है (जैसा कि एक वर्ग और एक समचतुर्भुज द्वारा उदाहरण दिया गया है जिसकी भुजा की लंबाई समान है)। समानता परीक्षण यह देखते हैं कि संगत भुजाओं के प्रत्येक जोड़े की लंबाई का अनुपात सामान्तर है या नहीं, यद्यपि फिर भी यह पर्याप्त नहीं है। किसी भी स्थिति में संगत कोणों की समानता भी आवश्यक है; संगत कोणों की समानता के साथ संगत भुजाओं की समानता (या आनुपातिकता) सर्वांगसमता (या समानता) के लिए आवश्यक और पर्याप्त है। संगत कोणों के साथ-साथ संगत भुजाओं को एक ही क्रम में प्रदर्शित होने के रूप में परिभाषित किया गया है, उदाहरण के लिए यदि भुजाओं के अनुक्रम वाले बहुभुज में abcde और दूसरा संबंधित पार्श्व अनुक्रम के साथ vwxyz हमारे पास शीर्ष कोण है a पक्षों के मध्य दिखाई देना a और b तब इसका संगत शीर्ष कोण है v पक्षों के मध्य प्रकट होना चाहिए v और w.

संदर्भ

  1. Townsend, Richard (1865). बिंदु, रेखा और वृत्त की आधुनिक ज्यामिति पर अध्याय. Hodges, Smith, and Company. p. 143-147.