एकात्मक परिवर्तन (क्वांटम यांत्रिकी)

From Vigyanwiki

क्वांटम यांत्रिकी में, श्रोडिंगर समीकरण वर्णित करता है कि एक प्रणाली समय के साथ कैसे बदलती है। यह प्रणाली में ऊर्जा के लिए प्रणाली की स्थिति में परिवर्तन से संबंधित है ( जिसे हैमिल्टोनियन कहलाने वाले एक संचालक दिया जाता है)। इसलिए, एक बार हैमिल्टनियन ज्ञात हो जाने पर, समय की गतिशीलता सैद्धांतिक रूप से ज्ञात हो जाती है। उसके बाद, जो बचा है उसे हैमिल्टोनियन को श्रेडिंगर समीकरण में प्रविष्ट करके प्रणाली की स्थिति को समय के एक सम्बन्ध के रूप में हल करना है।[1][2]

हालाँकि, प्रायः श्रोडिंगर समीकरण को हल करना मुश्किल होता है (यहां तक ​​कि एक कंप्यूटर के साथ भी)। इसलिए, भौतिकविदों ने गणितीय तकनीकों को विकसित किया है ताकि इन समस्याओं को सरल बनाने और भौतिक घटनाओं को स्पष्ट करने में मदद मिल सके। यह ऐसी ही तकनीक में से एक है जो हैमिल्टनियन में ऐकिक रूपांतरण लागू करता है। ऐसा करने से श्रोडिंगर समीकरण का एक सरलीकृत संस्करण प्राप्त हो सकता है जिसका समाधान मूल के समान ही है।

रूपांतरण

एक ऐकिक रूपांतरण (या फ़्रेम परिवर्त) को समय-निरपेक्ष हैमिल्टोनियन और ऐकिक संकारक के संदर्भ में व्यक्त किया जा सकता है। इस परिवर्तन के तहत, हैमिल्टोनियन इस प्रकार रूपांतरित होता है,

श्रोडिंगर समीकरण नए हैमिल्टोनियन पर लागू होता है। अपरिवर्तित और परिवर्तित समीकरणों के समाधान भी से सम्बन्धित है। विशेष रूप से, यदि तरंग फलन मूल समीकरण को संतुष्ट करता है, तो नये समीकरण को संतुष्ट करेगा।[3]

व्युत्पत्ति

याद रखें कि एकात्मक आव्यूह की परिभाषा के अनुसार, होता है। श्रोडिंगर समीकरण से शुरुआत करते हुए,

,

को हम अपनी इच्छानुसार सम्मिलित कर सकते हैं। विशेष रूप से, इसे के बाद सम्मिलित करने पर और दोनों पक्षों को से पूर्वगुणित करने पर, हमें

प्राप्त होता है। उसके बाद, ध्यान दें कि गुणनफल नियम द्वारा,

.

एक और सम्मिलित करने और पुनर्व्यवस्थित करने पर, हमें

मिलता है। अंत में, उपरोक्त (1) और (2) के संयोजन से वांछित रूपांतरण होता है,

यदि हम रूपांतरित तरंग फलन का वर्णन करने के लिए संकेतन को चुनते हैं, तो समीकरणों को स्पष्ट रूप में लिखा जा सकता है। उदाहरण के लिए, को

,

के रूप में फिर से लिखा जा सकता है जिसे मूल श्रोडिंगर समीकरण,

के रूप में फिर से लिखा जा सकता है। मूल तरंग फलन को के रूप में पुनर्प्राप्त किया जा सकता है।

अन्योन्यक्रिया प्रतिबिम्ब से सम्बन्ध

ऐकिक रूपांतरणों को अन्योन्यक्रिया (डिरैक) प्रतिबिम्ब के सामान्यीकरण के रूप में देखा जा सकता है। बाद के दृष्टिकोण में, हैमिल्टोनियन को समय-निरपेक्ष भाग और कालाश्रित भाग

में विभाजित किया गया है। इस स्थिति में, श्रोडिंगर समीकरण

, साथ .[4]

बन जाता है। ऐकिक रूपांतरण के साथ अनुरूपता को चुनकर प्रदर्शित किया जा सकता है। परिणामस्वरूप, प्राप्त होता है ।उपरोक्त से संकेतन का उपयोग करते हुए, हमारा रूपांतरित हैमिल्टोनियन

बन जाता है, पहले ध्यान दें कि , का एक फलन है, इसलिए दोनों को रूपान्तरित करना होगा। तब

,

जो में परिवर्तन में प्रथम पद का ध्यान रखता है, अर्थात । इसके बाद गणना करने के लिए श्रृंखला नियम का उपयोग करें

जो दूसरे के साथ रद्द हो जाता है। स्पष्ट रूप से हमारे पास शेष रह जाता है, परिणामस्वरूप जैसा कि उपर दिखाया गया है।

हालाँकि, एक सामान्य ऐकिक रूपांतरण को लागू करते समय, यह आवश्यक नहीं है कि को भागों में तोड़ दिया जाए, या फिर यह भी हो कि हैमिल्टोनियन के किसी भी भाग का एक फलन हो।

उदाहरण

घूर्णी तंत्र

दो-अवस्थाओं वाले एक परमाणु पर विचार करें, निम्नतम और उत्साहित । परमाणु का एक हैमिल्टोनियन है, जहाँ , g-e संक्रमण के साथ जुड़े प्रकाश की आवृत्ति है। अब मान लीजिए हम आवृत्ति पर एक चालन के साथ परमाणु को प्रकाशित करते हैं जो दो अवस्थाओं को युग्मित करता है, और कुछ जटिल चालन शक्ति Ω के लिए समय-निरपेक्ष संचालित हैमिल्टनियन

है। प्रतिस्पर्धी आवृत्ति पैमानों (, , और ) के कारण, चालन के प्रभाव का अनुमान लगाना मुश्किल है (संचालित आवर्त गति देखें)।

बिना चालन के, की अवस्था के सापेक्ष दोलन करेगी। एक द्वि-अवस्था प्रणाली के ब्लॉख क्षेत्र प्रतिनिधित्व में, यह z-अक्ष के चारों तरफ घूर्णन से मेल खाता है। अवधारणात्मक रूप से, हम गतिकी के इस घटक को ऐकिक रूपांतरण द्वारा परिभाषित निर्देश के घूर्णन तंत्र में प्रवेश करके हटा सकते है। इस परिवर्तन के तहत, हैमिल्टनियन

बन जाता है।

यदि चालक आवृत्ति g-e संक्रमण की आवृत्ति के बराबर है, तो है, अनुनाद प्राप्त होगा और फिर उपरोक्त समीकरण

कम हो जाता है।

इससे यह स्पष्ट है, यहां तक कि विवरण में जाए बिना भी, कि गतिकी में आवृत्ति पर निम्नतम और उत्साहित अवस्थाओं के बीच एक दोलन सम्मिलित होगा।[4]

एक अन्य सीमित स्थिति के रूप में, , मान लीजिए कि चालन बंद-अनुनादी से दूर है। हम श्रोडिंगर समीकरण को सीधे हल किए बिना उस स्थिति में गतिकी का पता लगा सकते हैं। मान लीजिए कि प्रणाली निम्नतम अवस्था में शुरू होता है। प्रारंभ में, हैमिल्टनियन के कुछ घटक को आबाद करेगा। थोड़े समय बाद, हालाँकि, यह के लगभग उतनी ही मात्रा में आबाद हो जाएगा लेकिन पूर्णतः विभिन्न अवस्था के साथ होगा। इस प्रकार एक बंद-अनुनादी चालन का प्रभाव स्वयं करने की प्रवृत्ति रखता है। इसे यह कहते हुए भी व्यक्त किया जा सकता है कि एक बंद-अनुनादी चालन परमाणु के तंत्र में तेजी से घूर्णन कर रहा है

इन अवधारणाओं को नीचे दी गई तालिका में प्रतिबिम्बमय किया गया है, जहां गोला ब्लॉख क्षेत्र का प्रतिनिधित्व करता है, तीर परमाणु की अवस्था का प्रतिनिधित्व करता है, और हाथ चालन का प्रतिनिधित्व करता है।

प्रयोगशाला तंत्र घूर्णी तंत्र
अनुनादी चालन
प्रयोगशाला तंत्र में अनुनादी चालन
एक तंत्र में परमाणु के घूर्णन के साथ अनुनादी चालन
बंद-अनुनादी चालन
प्रयोगशाला तंत्र में बंद-अनुनादी चालन
एक तंत्र में परमाणु के घूर्णन के साथ बंद-अनुनादी चालन

विस्थापित तंत्र

उपरोक्त उदाहरण का विश्लेषण अन्योन्यक्रिया प्रतिबिम्ब में भी किया जा सकता था। हालाँकि, निम्नलिखित उदाहरण का ऐकिक रूपांतरणों के सामान्य सूत्रीकरण के बिना विश्लेषण करना अधिक कठिन है। दो आवर्ती दोलकों पर विचार करें, जिनके बीच हम एक बीम स्प्लिटर अन्योन्यक्रिया का निर्माण करना चाहेंगे,

.

इसे प्रयोगात्मक रूप से दो सूक्ष्म-तरंग गुहिका अनुनादकों के साथ प्राप्त किया गया था जो और रूप में कार्य कर रहे हैं।[5] नीचे, हम इस प्रयोग के सरलीकृत संस्करण के विश्लेषण का संक्षिप्त विवरण देते हैं।

सूक्ष्म-तरंग गुहिकाओं के अतिरिक्त, प्रयोग में दोनों मोड्स के साथ युग्मित एक ट्रांसमोन क्वबिट, भी सम्मिलित था। क्वबिट दो आवृत्तियों और पर एक साथ संचालित होता है, जिसके लिए

इसके अतिरिक्त, मोड्स को युग्मित करने वाले कई चौथे-श्रेणी के पद हैं, लेकिन इनमें से ज्यादातर को नजरअंदाज किया जा सकता है। इस प्रयोग में, दो ऐसे पद हैं जो महत्वपूर्ण हो जायेंगे वो हैं

.

(H.c., हर्मिटी संयुग्मी के लिए संक्षेपविधि है।) हम एक विस्थापन परिवर्तन , मोड के लिए लागू कर सकते है।[clarification needed] सावधानीपूर्वक चुने गए आयामों के लिए, यह परिवर्तन को रद्द कर देगा जबकि सीढ़ी संचालक को भी विस्थापित करते हुए, । इससे हमारे पास यह बचता है

इस अभिव्यक्ति का विस्तार करने और तेज घूर्णन वाले पदों को छोड़ने पर, हमारे पास वांछित हैमिल्टोनियन बचता है,

.

बेकर-कैंपबेल-हॉसडॉर्फ सूत्र से सम्बन्ध

ऐकिक रूपांतरणों में सम्मिलित संचालकों के लिए यह सामान्य है जिसे संचालकों के घातांक के रूप में लिखा जाना है, , जैसा कि ऊपर देखा गया है। इसके अतिरिक्त, घातांकों में संचालक साधारणतः सम्बन्ध का पालन करते हैं, ताकि एक संचालक का परिवर्तन हो। अब पुनरावर्तक दिक् परिवर्तक का परिचय देते हुए,

हम इस परिवर्तन को दृढ़तापूर्वक लिखने के लिए बेकर-कैंपबेल-हॉसडॉर्फ सूत्र के एक विशेष परिणाम का उपयोग कर सकते हैं,

या, पूर्णता के लिए लंबे रूप में,

संदर्भ

  1. Sakurai, J. J.; Napolitano, Jim J. (2014). Modern Quantum Mechanics (Indian Subcontinent Version ed.). Pearson. pp. 67–72. ISBN 978-93-325-1900-8.
  2. Griffiths, David J. (2005). क्वांटम यांत्रिकी का परिचय (Second ed.). Pearson. pp. 24–29. ISBN 978-0-13-191175-8.
  3. Axline, Christopher J. (2018). "Chapter 6" (PDF). मॉड्यूलर सर्किट QED क्वांटम कंप्यूटिंग के लिए बिल्डिंग ब्लॉक (Ph.D. thesis). Retrieved 4 August 2018.
  4. 4.0 4.1 Sakurai, pp. 346-350.
  5. Yvonne Y. Gao; Brian J. Lester; et al. (21 June 2018). "दो माइक्रोवेव क्वांटम यादों के बीच प्रोग्रामयोग्य हस्तक्षेप". Phys. Rev. X. 8 (2). Supplemental Material. arXiv:1802.08510. doi:10.1103/PhysRevX.8.021073. S2CID 3723797.