पराश्रयी धारिता

From Vigyanwiki
Revision as of 16:23, 30 August 2023 by Abhishekkshukla (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

पराश्रयी धारिता एक अपरिहार्य और समान्यत: अवांछित धारिता है जो इलेक्ट्रॉनिक घटक या परिपथ के भागो के बीच केवल एक-दूसरे से निकटता के कारण उपस्थित होता है। जब अलग-अलग वोल्टेज पर दो विद्युत चालक एक-दूसरे के समीप होते हैं, तो उनके बीच का विद्युत क्षेत्र उन पर विद्युत आवेश जमा होने का कारण बनता है; यह प्रभाव धारिता है.

सभी व्यावहारिक परिपथ तत्व जैसे इंडक्टर्स, डायोड और ट्रांजिस्टर में आंतरिक क्षमता होती है, जिसके कारण उनका व्यवहार आदर्श परिपथ तत्वों से भिन्न हो सकता है। इसके अतिरिक्त, किन्हीं दो चालकों के बीच सदैव कुछ धारिता होती है; यह निकट दूरी वाले चालक जैसे तारों या विद्युत परिपथ बोर्ड के निशानों के साथ महत्वपूर्ण हो सकता है। प्रेरक या अन्य घाव घटक के घुमावों के बीच पराश्रयी धारिता को अधिकांशतः स्व-धारिता के रूप में वर्णित किया जाता है। चूँकि , इलेक्ट्रोमैग्नेटिक्स में, स्व-धारिता शब्द अधिक सही रूप से एक अलग घटना को संदर्भित करता है: किसी अन्य वस्तु के संदर्भ के बिना एक प्रवाहकीय वस्तु की धारिता है ।

उच्च-आवृत्ति परिपथ में पराश्रयी धारिता एक महत्वपूर्ण समस्या है और अधिकांशतः इलेक्ट्रॉनिक घटकों और परिपथ की ऑपरेटिंग आवृत्ति और बैंडविड्थ (सिग्नल प्रोसेसिंग) को सीमित करने वाला कारक है।

विवरण

जब अलग-अलग क्षमता वाले दो चालक एक-दूसरे के समीप होते हैं, तो वे एक-दूसरे के विद्युत क्षेत्र से प्रभावित होते हैं और एक संधारित्र की तरह विपरीत विद्युत आवेश जमा करते हैं। चालक के बीच संभावित v को बदलने के लिए उन्हें आवेश या डिस्आवेश करने के लिए चालक में या बाहर धारा i की आवश्यकता होती है।

जहाँ C चालकों के बीच की धारिता है। उदाहरण के लिए, एक प्रेरक अधिकांशतः ऐसे कार्य करता है मानो इसमें एक समानांतर संधारित्र सम्मिलित हो, क्योंकि इसकी समापन अधिक दूरी पर होती है। जब कुंडली के आर-पार संभावित अंतर उपस्थित होता है, तो एक-दूसरे से सटे तार अलग-अलग क्षमता पर होते हैं। वे कैपेसिटर की प्लेटों की तरह काम करते हैं, और इलेक्ट्रिक आवेश जमा करते हैं। कॉइल में वोल्टेज में किसी भी परिवर्तन के लिए इन छोटे 'कैपेसिटर' को आवेश और डिस्आवेश करने के लिए अतिरिक्त विद्युत प्रवाह की आवश्यकता होती है। जब वोल्टेज केवल धीरे-धीरे बदलता है, जैसा कि कम-आवृत्ति परिपथ में होता है, तो अतिरिक्त धारा समान्यत: नगण्य होता है, किंतु जब वोल्टेज तेजी से परिवर्तित होता है तो अतिरिक्त धारा बड़ा होता है और परिपथ के संचालन को प्रभावित कर सकता है।

पराश्रयी समाई को कम करने के लिए उच्च आवृत्तियों के लिए कॉइल्स को अधिकांशतः बास्केट-वुंड किया जाता है।

प्रभाव

कम आवृत्ति पर पराश्रयी धारिता को समान्यत: नजरअंदाज किया जा सकता है, किंतु उच्च आवृत्ति परिपथ में यह एक बड़ी समस्या हो सकती है। विस्तारित आवृत्ति प्रतिक्रिया वाले एम्पलीफायर परिपथ में, आउटपुट और इनपुट के बीच पराश्रयी धारिता फीडबैक पथ के रूप में कार्य कर सकता है, जिससे परिपथ उच्च आवृत्ति पर दोलन कर सकता है। इन अवांछित दोलनों को पराश्रयी दोलन कहा जाता है।

उच्च आवृत्ति एम्पलीफायरों में, पराश्रयी धारिता पराश्रयी तत्व (विद्युत नेटवर्क) के साथ संयोजन कर सकती है जैसे घटक प्रतिध्वनित परिपथ बनाते हैं, जिससे पराश्रयी दोलन भी होते हैं। सभी प्रेरकों में, पराश्रयी धारिता प्रेरक को स्व-प्रतिध्वनि बनाने के लिए कुछ उच्च आवृत्ति पर प्रेरकत्व के साथ प्रतिध्वनित होगी; इसे स्व-प्रतिध्वनि आवृत्ति कहा जाता है। इस आवृत्ति के ऊपर, प्रारंभ करने वाला में वास्तव में कैपेसिटिव प्रतिक्रिया होता है।

ऑप एम्प के आउटपुट से जुड़े लोड परिपथ की धारिता उनकी बैंडविड्थ (सिग्नल प्रोसेसिंग) को कम कर सकती है। उच्च-आवृत्ति परिपथ को विशेष डिजाइन तकनीकों की आवश्यकता होती है जैसे कि तारों और घटकों, गार्ड रिंग, समतल ज़मीन, विद्युत् विमान , इनपुट और आउटपुट के बीच विद्युत चुम्बकीय परिरक्षण, लाइनों की विद्युत समाप्ति, और अवांछित धारिता के प्रभाव को कम करने के लिए स्ट्रिपलाइन का सावधानीपूर्वक पृथक्करण है।

निकट दूरी वाले केबलों और बस (कंप्यूटिंग) में, पराश्रयी कैपेसिटिव कपलिंग क्रॉसस्टॉक का कारण बन सकती है, जिसका अर्थ है कि एक परिपथ से सिग्नल दूसरे में प्रवाहित होता है, जिससे हस्तक्षेप और अविश्वसनीय संचालन होता है।

इलेक्ट्रॉनिक डिज़ाइन स्वचालन कंप्यूटर प्रोग्राम, जिनका उपयोग वाणिज्यिक मुद्रित परिपथ बोर्डों को डिज़ाइन करने के लिए किया जाता है, दोनों घटकों और परिपथ बोर्ड निशानों के पराश्रयी धारिता और अन्य पराश्रयी प्रभावों की गणना कर सकते हैं, और उन्हें परिपथ ऑपरेशन के सिमुलेशन में सम्मिलित कर सकते हैं। इसे पराश्रयी निष्कर्षण कहा जाता है।

मिलर धारिता

इनवर्टिंग एम्प्लीफाइंग उपकरणों के इनपुट और आउटपुट इलेक्ट्रोड के बीच पराश्रयी धारिता, जैसे कि ट्रांजिस्टर के आधार और कलेक्टर के बीच, विशेष रूप से परेशानी भरा होता है क्योंकि यह उपकरण के लाभ (इलेक्ट्रॉनिक्स) से गुणा हो जाता है। यह मिलर धारिता (पहली बार जॉन मिल्टन मिलर, 1920 द्वारा वेक्यूम - ट्यूब में नोट किया गया) ट्रांजिस्टर और वैक्यूम ट्यूब जैसे सक्रिय उपकरणों के उच्च आवृत्ति प्रदर्शन को सीमित करने वाला प्रमुख कारक है। 1920 के दशक में नियंत्रण ग्रिड और प्लेट इलेक्ट्रोड के बीच पराश्रयी धारिता को कम करने के लिए स्क्रीन ग्रिड को ट्रायोड वैक्यूम ट्यूब में जोड़ा गया था, जिससे टेट्रोड का निर्माण हुआ, जिसके परिणामस्वरूप ऑपरेटिंग आवृत्ति में अधिक वृद्धि हुई।[1]

एक एम्पलीफायर के इनपुट और आउटपुट के बीच पराश्रयी धारिता Z = C का प्रभाव है

दाएँ, आरेख दर्शाता है कि मिलर धारिता कैसे उत्पन्न होती है। मान लीजिए कि दिखाया गया एम्पलीफायर A के वोल्टेज लाभ के साथ एक आदर्श इनवर्टिंग एम्पलीफायर है, और Z = C इसके इनपुट और आउटपुट के बीच एक धारिता है। एम्पलीफायर का आउटपुट वोल्टेज है

यह मानते हुए कि एम्पलीफायर में उच्च इनपुट प्रतिबाधा है, इसलिए इसका इनपुट धारा नगण्य है, इनपुट टर्मिनल में धारा है

तो एम्पलीफायर के इनपुट पर धारिता है

इनपुट धारिता को एम्पलीफायर के लाभ से गुणा किया जाता है। यह मिलर धारिता है. यदि इनपुट परिपथ में Ri की तल पर प्रतिबाधा है तो (कोई अन्य एम्पलीफायर ध्रुव नहीं मानते हुए) एम्पलीफायर का आउटपुट है

एम्पलीफायर की बैंडविड्थ (सिग्नल प्रोसेसिंग) उच्च आवृत्ति रोल-ऑफ द्वारा सीमित है

तो बैंडविड्थ कारक (1 + A) से कम हो जाता है, उपकरण का लगभग वोल्टेज लाभ आधुनिक ट्रांजिस्टर का वोल्टेज लाभ 10 - 100 या इससे भी अधिक हो सकता है, इसलिए यह एक महत्वपूर्ण सीमा है।

यह भी देखें

  • पराश्रयी तत्व (विद्युत नेटवर्क)
  • डिकूपलिंग संधारित्र

संदर्भ

  1. Alley, Charles L.; Atwood, Kenneth W. (1973). Electronic Engineering, 3rd Ed. New York: John Wiley & Sons. p. 199. ISBN 0-471-02450-3.