तरंगिका पैकेट अपघटन

From Vigyanwiki
Revision as of 21:36, 14 March 2023 by alpha>VikasVerma

मूल रूप से इष्टतम उपबैंड ट्री संरचना (एसबी-टीएस) के रूप में जाना जाता है, जिसे तरंगिका पैकेट वियोजन (डब्ल्यूपीडी) भी कहा जाता है।(कभी-कभी केवल तरंगिका पैकेट या उपबैंड ट्री के रूप में जाना जाता है), एक तरंगिका रूपांतरण है जहां असतत-समय (नमूना) संकेत असतत तरंगिका रूपांतरण (डीडब्ल्यूटी) की तुलना में अधिक निस्यंदक के माध्यम से पारित किया जाता है।

परिचय

DWT में, प्रत्येक स्तर की गणना केवल पिछले वेवलेट सन्निकटन गुणांक (cAj) डिस्क्रीट-टाइम लो- और हाई-पास चतुर्भुज दर्पण फिल्टर के माध्यम से।[1][2]हालाँकि, WPD में, दोनों विवरण (cDj(1-डी मामले में), सीएचj, सीवीj, सीडीj(2-डी मामले में)) और सन्निकटन गुणांक पूर्ण बाइनरी ट्री बनाने के लिए विघटित होते हैं।[3][2][4][5][6][7]

3 स्तरों पर तरंगिका पैकेट अपघटन। जी [एन] निम्न-पास सन्निकटन गुणांक हैं, एच [एन] उच्च-पास विस्तार गुणांक हैं।

अपघटन के n स्तरों के लिए WPD 2 उत्पन्न करता हैn विपरीत गुणांक (या नोड्स) के विभिन्न सेट (n + 1) डीडब्ल्यूटी के लिए सेट करता है। हालाँकि, downsampling प्रक्रिया के कारण गुणांकों की समग्र संख्या अभी भी समान है और कोई अतिरेक नहीं है।

संपीड़न के दृष्टिकोण से, मानक तरंगिका रूपांतरण सर्वोत्तम परिणाम नहीं दे सकता है, क्योंकि यह तरंगिका आधारों तक सीमित है जो कम आवृत्तियों की ओर दो की शक्ति से बढ़ता है। यह हो सकता है कि आधारों का एक और संयोजन किसी विशेष सिग्नल के लिए अधिक वांछनीय प्रतिनिधित्व उत्पन्न करता है।[5] सबबैंड ट्री संरचना के लिए कई एल्गोरिदम हैं जो इष्टतम आधारों का एक सेट ढूंढते हैं जो किसी विशेष लागत फ़ंक्शन (एन्ट्रापी, ऊर्जा संघनन, आदि) के सापेक्ष डेटा का सबसे वांछनीय प्रतिनिधित्व प्रदान करते हैं।[1] [2] विभिन्न प्रकार के सबबैंड ट्री (ऑर्थोगोनल आधार) के चयन को संबोधित करने के लिए सिग्नल प्रोसेसिंग और संचार क्षेत्रों में प्रासंगिक अध्ययन किए गए थे, उदा। ऊर्जा संघनन (एन्ट्रॉपी), सबबैंड सहसंबंधों और अन्य सहित रुचि के प्रदर्शन मेट्रिक्स के संबंध में नियमित, डाइडिक, अनियमित। [4] [6] [7] असतत तरंगिका रूपांतरण सिद्धांत (समय चर में निरंतर) असतत (नमूना) संकेतों को बदलने के लिए एक सन्निकटन प्रदान करता है। इसके विपरीत, डिस्क्रीट-टाइम सबबैंड ट्रांसफॉर्म थ्योरी पहले से ही सैंपल किए गए संकेतों का सही प्रतिनिधित्व करने में सक्षम बनाती है।[5][8]


गैलरी


अनुप्रयोग

प्रीक्लिनिकल डायग्नोसिस में वेवलेट पैकेट सफलतापूर्वक लागू किए गए थे।[9]


संदर्भ

  1. 1.0 1.1 Coifman R. R. & Wickerhauser M. V., 1992. Entropy-Based Algorithms for Best Basis Selection, IEEE Transactions on Information Theory, 38(2).
  2. 2.0 2.1 2.2 A. N. Akansu and Y. Liu, On Signal Decomposition Techniques, (Invited Paper), Optical Engineering Journal, special issue Visual Communications and Image Processing, vol. 30, pp. 912–920, July 1991.
  3. Daubechies, I. (1992), Ten lectures on wavelets, SIAM.
  4. 4.0 4.1 H. Caglar, Y. Liu and A. N. Akansu, Statistically Optimized PR-QMF Design, Proc. SPIE Visual Communications and Image Processing, vol. 1605, pp. 86–94, 1991.
  5. 5.0 5.1 5.2 A. N. Akansu and R. A. Haddad, Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets. Boston, MA: Academic Press, ISBN 978-0-12-047141-6, 1992.
  6. 6.0 6.1 A. Benyassine and A. N. Akansu, Performance Analysis and Optimal Structuring of Subchannels for Discrete Multitone Transceivers , Proc. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1456–1459, April 1995.
  7. 7.0 7.1 M. V. Tazebay and A. N. Akansu, Adaptive Subband Transforms in Time-frequency Excisers for DSSS Communications Systems, IEEE Trans. Signal Process., vol. 43, pp. 2776–2782, Nov. 1995.
  8. A. N. Akansu, W. A. Serdijn, and I. W. Selesnick, Wavelet Transforms in Signal Processing: A Review of Emerging Applications, Physical Communication, Elsevier, vol. 3, issue 1, pp. 1–18, March 2010.
  9. Zhang, Y.; Dong, Z. (2015). "असतत वेवलेट पैकेट के माध्यम से चुंबकीय अनुनाद (एमआर) मस्तिष्क छवियों का प्रीक्लिनिकल डायग्नोसिस, सैलिस एंट्रॉपी और सामान्यीकृत ईजेनवैल्यू प्रॉक्सिमल सपोर्ट वेक्टर मशीन (जीईपीएसवीएम) के साथ बदलता है।". Entropy. 17 (4): 1795–1813. Bibcode:2015Entrp..17.1795Z. doi:10.3390/e17041795.


बाहरी संबंध