वेक्टर-मूल्यवान फ़ंक्शन

From Vigyanwiki
Revision as of 13:55, 18 November 2022 by alpha>Deepali

एक वेक्टर-मूल्यवान फ़ंक्शन, जिसे वेक्टर फ़ंक्शन के रूप में भी जाना जाता है, एक या एक से अधिक चर का गणितीय फ़ंक्शन है, जिसकी सीमा बहुआयामी वेक्टर या अनंत-आयामी-वेक्टर का एक सेट है। वेक्टर-मूल्यांकन फ़ंक्शन का इनपुट एक स्केलर या एक वेक्टर हो सकता है (यानी, डोमेन का आयाम 1 या 1 से अधिक हो सकता है), फ़ंक्शन के डोमेन के आयाम का उसकी सीमा के आयाम से कोई संबंध नहीं है।

उदाहरण: हेलिक्स

वेक्टर-मूल्यवान फ़ंक्शन का एक ग्राफ r(z) = ⟨2 cos z, 4 sin z, z निकट मूल्यांकन किए जाने पर समाधान और वेक्टर की एक श्रृंखला का संकेत देता है z = 19.5

वेक्टर-मूल्यवान फ़ंक्शन का एक सामान्य उदाहरण वह है जो वास्तविक पैरामीटर t पर निर्भर करता है, जो अक्सरसमय का प्रतिनिधित्व करता है, परिणाम के रूप में यूक्लिडियन वेक्टर v(t) उत्पन्न करता है। मानक इकाई वैक्टर i, j, k कार्टेसियन 3-स्पेस के संदर्भ में, इन विशिष्ट प्रकार के वेक्टर-मूल्यांकन कार्यों को इस प्रकार के व्यंजकों द्वारा किये जाते हैं:

जहां f(t), g(t) और h(t) पैरामीटर t के समन्वय कार्य हैं, और इस वेक्टर-मूल्यवान फ़ंक्शन का डोमेन फ़ंक्शन f, g, और h के डोमेन का प्रतिच्छेदन है। इसे एक अलग संकेतन में भी संदर्भित किया जा सकता है:


सदिश r(t) का पृष्ठभाग मूल बिंदु पर और शीर्ष फलन द्वारा मूल्यांकित निर्देशांकों पर है।

ग्राफ़ में दाईं ओर दिखाया गया निकट t = 19.5 (6π और 6.5π के बीच; यानी, 3 से कुछ अधिक घूर्णन) वेक्टर फ़ंक्शन का मूल्यांकन है। हेलिक्सएक ऐसा मार्ग है जो वेक्टर के अग्रभाग से खोजा जाता है, क्योंकि t शून्य से 8π तक बढ़ जाता है।

2D में, हम समान रूप से वेक्टर-मूल्यांकन कार्यों के बारे में दर्शा सकते हैं जैसे:

या


रैखिक स्थिति

रैखिक स्थिति में फ़ंक्शन को मैट्रिक के संदर्भ में व्यक्त किया जा सकता है:

जहां y एक n × 1 आउटपुट वेक्टर, जहां y  n x 1 आउटपुट वेक्टर, x  k x 1 इनपुट वेक्टर और A  n x k पैरामीटर मैट्रिक्स है। निकटता से संबंधित सजातीय स्थिति (अनुवाद के लिए रैखिक) जहां फ़ंक्शन रूप लेता है

जहां इसके अतिरिक्त b पैरामीटर का n × 1 वेक्टर है।

रैखिक स्थिति अक्सर उत्पन्न होती है, उदाहरण के लिए एकाधिक प्रतिगमन[clarification needed] में, जहां उदाहरण के लिए n × 1 वेक्टर एक आश्रित चर के अनुमानित मान को k × 1 वेक्टर (k < n) मॉडल पैरामीटर्स के अनुमानित मान:

जिसमें X (पिछले सामान्य रूप में A की भूमिका निभाते हुए) स्थिर (अनुभवजन्य रूप से आधारित) संख्याओं का n × k मैट्रिक्स है।

सतह का पैरामीट्रिक प्रतिनिधित्व

एक सतह, 3-आयामी स्थान में अंत:स्थापित बिंदुओं का 2-आयामी सेट है। एक सतह का प्रतिनिधित्व करने का एक तरीका पैरामीट्रिक समीकरण के साथ है, जिसमें दो पैरामीटर s और t सतह पर किसी भी बिंदु के तीन कार्टेशियन निर्देशांक निर्धारित करते हैं:

यहाँ f एक वेक्टर-मूल्यांकन फ़ंक्शन है। n-आयामी स्थान में एम्बेडेड सतह के लिए, इसी तरह का प्रतिनिधित्व होता है:

त्रि-आयामी वेक्टर फ़ंक्शन का व्युत्पन्न

कई वेक्टर-मूल्यांकन कार्यों, जैसे स्केलर-मूल्यांकन कार्यों को केवल कार्टेसियन समन्वय प्रणाली में घटकों को अलग करके अलग किया जा सकता है। इस प्रकार यदि


एक वेक्टर-वैल्यूड फ़ंक्शन है, तब


वेक्टर व्युत्पन्न निम्नलिखित भौतिक व्याख्या को स्वीकार करता है: यदि r(t) कण की स्थिति का प्रतिनिधित्व करता है, तो व्युत्पन्न कण का वेग है

इसी तरह, वेग के व्युत्पन्न त्वरण है

आंशिक व्युत्पन्न

अदिश चर q के संबंध में वेक्टर फ़ंक्शन a के आंशिक व्युत्पन्न [1] के रूप में परिभाषित किया गया है

जहाँ a, ei. की दिशा में a का अदिश घटक है। इसे a और ei या उनके बिंदु गुणनफल की दिशा कोज्या भी कहते हैं। वेक्टर e1, e2, e3 संदर्भ फ्रेम में निर्धारित एक असामान्य आधार बनाते हैं जिसमें व्युत्पन्न लिया जा रहा है।

साधारण व्युत्पन्न

यदि a को एकल अदिश चर के वेक्टर फ़ंक्शन के रूप में माना जाता है, जैसे समय t, तो उपरोक्त समीकरण t के संबंध में a के पहले सामान्य समय व्युत्पन्न में कम हो जाता है,[1]

कुल व्युत्पन्न

यदि वेक्टर a अदिश चर qr (r = 1, ..., n) की संख्या n का फ़ंक्शन है और प्रत्येक qr केवल समय t का एक फ़ंक्शन है, तो t के संबंध में एक सामान्य व्युत्पन्न व्यक्त किया जा सकता है, कुल व्युत्पन्न के रूप में जाना जाता है, जैसा कि[1]

कुछ लेखक कुल व्युत्पन्न ऑपरेटर को सूचित करने के लिए कैपिटल डी का उपयोग करना पसंद करते हैं, जैसा कि D/Dt में है। कुल व्युत्पन्न qr चर के समय विचरण के कारण a में परिवर्तन के लिए कुल व्युत्पन्न खातों में आंशिक समय व्युत्पन्न से अलग है।

संदर्भ फ्रेम

जबकि अदिश-मूल्यवान फ़ंक्शन के लिए केवल एक ही संभव संदर्भ फ्रेम है, वेक्टर-मूल्यवान फ़ंक्शन के व्युत्पन्न को लेने के लिए एक संदर्भ फ्रेम की आवश्यकता होती है (कम से कम जब एक निश्चित कार्टेसियन समन्वय प्रणाली इस तरह से निहित नहीं है)। एक बार एक संदर्भ फ्रेम चुने जाने के बाद, वेक्टर-मूल्यांकन फ़ंक्शन के व्युत्पन्न की गणना अदिश-मूल्यवान फ़ंक्शन के व्युत्पन्न के लिए समान तकनीकों का उपयोग करके की जा सकती है। संदर्भ फ्रेम का एक अलग विकल्प, सामान्य रूप से, एक अलग व्युत्पन्न फ़ंक्शन का उत्पादन करेगा। विभिन्न संदर्भ फ्रेम में व्युत्पन्न कार्यों में एक विशिष्ट संबंध है।

नॉनफिक्स्ड बेस के साथ वेक्टर फंक्शन का व्युत्पन्न

वेक्टर फ़ंक्शन के व्युत्पन्न के लिए उपरोक्त सूत्र इस धारणा पर भरोसा करते हैं कि आधार वेक्टर e1, e2, e3 स्थिर हैं, अर्थात, संदर्भ फ्रेम में तय किया गया है जिसमें a के व्युत्पन्न लिया जा रहा है, और इसलिए e1, e2, e3 प्रत्येक के समान रूप से शून्य का व्युत्पन्न है। यह अक्सर एक निश्चित समन्वय प्रणाली में वेक्टर क्षेत्रों से संबंधित समस्याओं के लिए या भौतिकी में सरल समस्याओं के लिए सच है। हालांकि, कई जटिल समस्याओं में कई गतिशील संदर्भ फ्रेम में एक वेक्टर फ़ंक्शन के व्युत्पन्न शामिल है, जिसका मतलब है कि आधार वेक्टर आवश्यक रूप से स्थिर नहीं होगा। ऐसे मामले में जहां आधार वैक्टर e1, e2, e3 संदर्भ फ्रेम E में निश्चित किए गए हैं, लेकिन संदर्भ फ्रेम N में नहीं, संदर्भ फ्रेम N में वेक्टर के सामान्य समय व्युत्पन्न के लिए अधिक सामान्य सूत्र है[1]

जहां व्युत्पन्न ऑपरेटर के बाईं ओर सुपरस्क्रिप्ट N संदर्भित फ्रेम को इंगित करता है जिसमें व्युत्पन्न लिया जाता है। जैसा कि पहले दिखाया गया है, दाहिने हाथ की ओर पहला शब्द संदर्भ फ्रेम में a के व्युत्पन्न के बराबर है, जहां E संदर्भ फ्रेम e1, e2, e3 स्थिर हैं। यह भी दिखाया जा सकता है कि दाईं ओर दूसरा शब्द वेक्टर a के साथ गुणा किया गया है।[1] इस प्रकार, प्रतिस्थापन के बाद, दो संदर्भ फ़्रेमों में वेक्टर फ़ंक्शन के व्युत्पन्न से संबंधित सूत्र है[1]
जहां NωE संदर्भ फ्रेम N के सापेक्ष संदर्भ फ्रेम E का कोणीय वेग है।

एक सामान्य उदाहरण जहां इस सूत्र का उपयोग किया जाता है, जमीन के सापेक्ष राकेट के वेग के माप का उपयोग करके जड़त्वीय संदर्भ फ्रेम में एक अंतरिक्ष-जनित वस्तु, जैसे कि रॉकेट, के वेग का पता लगाना है। स्थिति rR पर स्थित एक रॉकेट R के जड़त्वीय संदर्भ फ्रेम N में वेग NvR सूत्र का उपयोग करके पाया जा सकता है

जहां NωE जड़त्वीय फ्रेम N के सापेक्ष पृथ्वी का कोणीय वेग है। चूंकि वेग स्थिति का व्युत्पन्न है, NvR और EvR क्रमशः संदर्भ फ्रेम N और E में rR के व्युत्पन्न हैं। प्रतिस्थापन द्वारा,
जहां EvR एक संदर्भ फ्रेम E से मापा रॉकेट के वेग वेक्टर है जो पृथ्वी के लिए निर्धारित है।

व्युत्पन्न और सदिश गुणन

सदिश फलनों के उत्पाद का व्युत्पन्न अदिश फलनों के उत्पाद नियम के समान व्यवहार करता है।[2] विशेष रूप से, सदिश के #अदिश गुणन के मामले में, यदि p, q का अदिश चर फलन है,[1]

  1. Dot उत्पाद के मामले में, दो वैक्टर a और b के लिए जो q के दोनों कार्य हैं,[1]

इसी प्रकार, दो सदिश फलनों के #क्रॉस गुणनफल का अवकलज है[1]


एक एन-आयामी वेक्टर फ़ंक्शन का व्युत्पन्न

रिक्त स्थान में मानों के साथ वास्तविक संख्या t का एक फ़ंक्शन f के रूप में लिखा जा सकता है . इसका व्युत्पन्न बराबर है

.

यदि f कई चरों का एक फलन है, तो मान लीजिए , तो f के घटकों के आंशिक अवकलज a . बनाते हैं मैट्रिक्स को f का जैकोबियन मैट्रिक्स कहा जाता है।

अनंत-आयामी वेक्टर फ़ंक्शन

यदि किसी फलन f के मान एक आयाम (सदिश समष्टि) में हैं|अनंत-आयामी सदिश समष्टि X, जैसे हिल्बर्ट समष्टि, तब f को अनंत-विमीय सदिश फलन कहा जा सकता है।

हिल्बर्ट अंतरिक्ष में मूल्यों के साथ कार्य

यदि f के फ़ंक्शन का तर्क एक वास्तविक संख्या है और X एक हिल्बर्ट स्थान है, तो एक बिंदु t पर f के व्युत्पन्न को परिमित-आयामी मामले के रूप में परिभाषित किया जा सकता है:

परिमित-आयामी मामले के अधिकांश परिणाम अनंत-आयामी मामले में भी होते हैं, उत्परिवर्तन उत्परिवर्तन। विभेदन को कई चरों के कार्यों के लिए भी परिभाषित किया जा सकता है (उदाहरण के लिए, या और भी , जहाँ Y एक अनंत-विमीय सदिश समष्टि है)।

एन.बी. यदि एक्स एक हिल्बर्ट स्थान है, तो कोई भी आसानी से दिखा सकता है कि किसी भी व्युत्पन्न (और कोई अन्य सीमा (गणित) ) की गणना घटक के अनुसार की जा सकती है: यदि

(अर्थात।, , कहाँ पे अंतरिक्ष X ) का एक सामान्य आधार है, और मौजूद है, तो

.

हालांकि, एक घटकवार व्युत्पन्न का अस्तित्व एक व्युत्पन्न के अस्तित्व की गारंटी नहीं देता है, क्योंकि हिल्बर्ट अंतरिक्ष में घटक-वार अभिसरण हिल्बर्ट अंतरिक्ष के वास्तविक स्थलीय स्थान के संबंध में अभिसरण की गारंटी नहीं देता है।

अन्य अनंत-आयामी वेक्टर रिक्त स्थान

उपरोक्त में से अधिकांश अन्य टोपोलॉजिकल वेक्टर स्पेस एक्स के लिए भी हैं। हालांकि, बनच स्पेस सेटिंग में उतने शास्त्रीय परिणाम नहीं हैं, उदाहरण के लिए, रेडॉन-निकोडिम संपत्ति में मूल्यों के साथ एक बिल्कुल निरंतर कार्य के लिए कहीं भी व्युत्पन्न होने की आवश्यकता नहीं है। इसके अलावा, अधिकांश बनच रिक्त स्थान सेटिंग में कोई ऑर्थोनॉर्मल बेस नहीं हैं।

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Kane & Levinson 1996, pp. 29–37
  2. In fact, these relations are derived applying the product rule componentwise.


संदर्भ

  • Kane, Thomas R.; Levinson, David A. (1996), "1–9 Differentiation of Vector Functions", Dynamics Online, Sunnyvale, California: OnLine Dynamics, Inc., pp. 29–37
  • Hu, Chuang-Gan; Yang, Chung-Chun (2013), Vector-Valued Functions and their Applications, Springer Science & Business Media, ISBN 978-94-015-8030-4


बाहरी संबंध