जटिल अनुकूली प्रणाली

From Vigyanwiki
Revision as of 12:28, 5 October 2023 by alpha>Abhishek

जटिल अनुकूली प्रणाली (काम्प्लेक्स अडैप्टिव सिस्टम) एक सिस्टम थ्योरी है जो काम्प्लेक्स सिस्टम है जिसमें यह डायनामिक नेटवर्क इंटरेक्शन है, किन्तु कॉम्पोनेन्ट के व्यवहार के अनुसार संयोजन का व्यवहार अनुमानित नहीं हो सकता है। यह अडैप्टिव सिस्टम है जिसमें व्यक्तिगत और सामूहिक व्यवहार परिवर्तन-आरंभ करने वाले सूक्ष्म-घटना या घटनाओं के संग्रह के अनुरूप उत्परिवर्तित और स्व-संगठित होते हैं।[1][2][3] यह परिवर्तित समय के अनुकूल सिस्टम के लिए गठित अपेक्षाकृत समान और आंशिक रूप से जुड़े सूक्ष्म संरचनाओं का काम्प्लेक्स मैक्रोस्कोपिक संग्रह है और मैक्रोस्ट्रक्चर या मैक्रो-स्ट्रक्चर के रूप में उनकी उत्तरजीविता को बढ़ाता है।[1][2][4] कॉम्प्लेक्स एडेप्टिव सिस्टम दृष्टिकोण रेप्लिकाटर डायनामिक पर आधारित है।[5] इस प्रकार काम्प्लेक्स अडैप्टिव सिस्टम्स का अध्ययन, गैर-रेखीय डायनामिक सिस्टम्स का उपसमूह, [6] अंतःविषय स्थिति है जो सिस्टम-लेवल मॉडल और अंतर्दृष्टि विकसित करने के लिए प्राकृतिक और सामाजिक विज्ञान से अंतर्दृष्टि को मिश्रित करने का प्रयास करता है जो हेटेरोगेनियस एजेंट, चरण परिवर्तन और आकस्मिक व्यवहार की अनुमति देता है। [7]

अवलोकन

थेर्म काम्प्लेक्स अडैप्टिव सिस्टम, या काम्प्लेक्स साइंस, का उपयोग अधिकांशतः शिथिल रूप से संगठित शैक्षणिक क्षेत्र का वर्णन करने के लिए किया जाता है जो ऐसी सिस्टम्स के अध्ययन के निकट विकसित हुआ है। काम्प्लेक्स साइंस एकल थ्योरी नहीं है - यह एक से अधिक सैद्धांतिक प्रारूप को सम्मिलित करता है और अंतःविषय है, जो जीवन, अनुकूलनीय, परिवर्तनशील प्रणाली के विषय में कुछ मूलभूत प्रश्नों के उत्तर खोजता है। काम्प्लेक्स अडैप्टिव सिस्टम कठोर या सोफ्टर दृष्टिकोण अपना सकती हैं।[8] कठिन थ्योरी फॉर्रिमलक लैंग्वेज का उपयोग करते हैं जो स्पष्ट होती है, प्रतिनिधियो को मूर्त गुणों के रूप में देखते हैं, और सामान्यतः वस्तुओं को विजिबल सिस्टम में देखते हैं जिन्हें किसी प्रकार से परिवर्तन किया जा सकता है। सोफ्टर थ्योरी प्राकृतिक भाषा और आख्यानों का उपयोग करते हैं जो स्पष्ट नहीं हो सकते हैं, और प्रतिनिधि मूर्त और सार दोनों गुणों वाले विषय हैं। कठिन काम्प्लेक्स थ्योरी के उदाहरणों में काम्प्लेक्स अडैप्टिव सिस्टम (सीएएस) और विजिबल थ्योरी सम्मिलित हैं, और सोफ्टर थ्योरी का वर्ग विजिबल सिस्टम थ्योरी है। कठोर थ्योरी में किए गए विभिन्न प्रस्तावात्मक विचार सोफ्टर थ्योरी के लिए भी प्रासंगिक हैं। यहां से, रुचि अब सीएएस पर केन्द्रित होगी।

सीएएस का अध्ययन सिस्टम काम्प्लेक्स, आकस्मिक और स्थूल गुणों पर केंद्रित है।[4][9][10] जॉन हेनरी हॉलैंड या जॉन एच. हॉलैंड ने कहा कि सीएएस ऐसी प्रणालियां हैं जिनमें बड़ी संख्या में कॉम्पोनेन्ट होते हैं, जिन्हें अधिकांशतः प्रतिनिधि कहा जाता है, जो वार्तालाप करते हैं और अनुकूलन करते हैं या सीखते हैं।[11] काम्प्लेक्स अडैप्टिव सिस्टम्स के विशिष्ट उदाहरणों में सम्मिलित हैं: जलवायु; शहरों; फर्म; बाज़ार; सरकारें; उद्योग; पारिस्थितिकी तंत्र; सोशल नेटवर्क; पावर ग्रिड; एनिमल हर्ड; यातायात प्रवाह; सामाजिक कीड़ा (जैसे चींटी) उपनिवेश;[12] मस्तिष्क और प्रतिरक्षा प्रणाली; और कोशिका (जीव विज्ञान) और विकासशील भ्रूण मानव सामाजिक समूह-आधारित प्रयास, जैसे राजनीतिक दल, समुदाय, भू-राजनीतिक संगठन, युद्ध और टेररिस्ट नेटवर्क इंटरेक्शन को भी सीएएस माना जाता है।[12][13][14] इंटरनेट और साइबरस्पेस-ह्यूमन-कंप्यूटर इंटरैक्शन के सम्मिश्र मिश्रण द्वारा निर्मित, सहयोगित और प्रबंधित, को काम्प्लेक्स अडैप्टिव सिस्टम भी माना जाता है।[15][16][17] सीएएस पदानुक्रमित हो सकता है, किन्तु अधिक बार स्व-संगठन के तथ्यों को प्रदर्शित करता है।[18]

काम्प्लेक्स अडैप्टिव सिस्टम शब्द 1968 में समाजशास्त्री वाल्टर एफ. बकले द्वारा लिखा गया था [19][20] जिन्होंने सांस्कृतिक विकास का मॉडल प्रस्तावित किया जो मनोवैज्ञानिक और सामाजिक-सांस्कृतिक प्रणाली को जैविक प्रजातियों के अनुरूप मानता है।[21] इस प्रकार आधुनिक संदर्भ में, काम्प्लेक्स अडैप्टिव सिस्टम कभी-कभी मेमोरी साइंस से जुड़ी होती है,[22] या मेमेटिक्स के सुधार के रूप में प्रस्तावित किया गया था।[23] माइकल डी. कोहेन (अकादमिक) या माइकल डी. कोहेन और रॉबर्ट एक्सेलरोड का चूंकि तर्क है कि यह दृष्टिकोण सामाजिक डार्विनवाद या समाजशास्त्र नहीं है, क्योंकि तथापि विविधता, अंतःक्रिया और चयन की अवधारणाओं को 'पापुलेशन मॉडलिंग' पर प्रयुक्त किया जा सकता है। व्यावसायिक रणनीतियाँ', उदाहरण के लिए, विस्तृत विकासवादी तंत्र अधिकांशतः स्पष्ट रूप से अजैविक होते हैं।[24] इस प्रकार, काम्प्लेक्स अडैप्टिव सिस्टम रिचर्ड डॉकिन्स के रेप्लिकेटर (विकास इकाई) के विचार के समान है।[24][25][26]

सामान्य गुण

जो चीज़ सीएएस को प्योर मल्टी-एजेंट सिस्टम (एम.ए.एस) से पृथक करती है, वह टॉप-लेवल गुणों और स्व-संगठन, सम्मिश्र, उद्भव और स्व-संगठन जैसी विशेषताओं पर ध्यान केंद्रित करना है। एमएएस को विभिन्न इंटरैक्टिंग एजेंट से बनी प्रणाली के रूप में परिभाषित किया गया है; जबकि सीएएस में, एजेंट और साथ ही सिस्टम अडैप्टिव होते हैं और सिस्टम स्व संगठन होता है। इस प्रकार सीएएस परस्पर क्रिया करने वाले, अडैप्टिव एजेंट काम्प्लेक्स, स्व-समान सामूहिकता है। काम्प्लेक्स अडैप्टिव सिस्टम्स को उच्च स्तर की अडैप्टिव क्षमता की विशेषता होती है, जो उन्हें विकट: अस्तव्यस्तता की स्थिति में लचीलापन प्रदान करती है।

अन्य महत्वपूर्ण गुण अनुकूलन (या समस्थिति), संचार, सहयोग, विशेषज्ञता, स्थानिक और लौकिक संगठन और प्रजनन हैं। वह सभी स्तरों पर पाए जा सकते हैं: कोशिकाएं बड़े जीवों की तरह ही स्वयम को विशेषज्ञ बनाती हैं, अनुकूलित करती हैं और पुनरुत्पादित करती हैं। संचार और सहयोग प्रतिनिधि से लेकर प्रणाली स्तर तक सभी स्तरों पर होता है। ऐसी प्रणाली में प्रतिनिधि के मध्य सहयोग करने वाली शक्तियों का उपयोग किया जाता है, कुछ स्थितियों में, गेम थ्योरी के साथ इंटरेक्शन किया जा सकता है।

विशेषताएँ

काम्प्लेक्स सिस्टम्स की कुछ सबसे महत्वपूर्ण विशेषताएँ हैं:[27]

  • अवयवो की संख्या इतनी बड़ी है कि पारंपरिक विवरण (उदाहरण के लिए विभेदक समीकरणों की प्रणाली) न केवल अव्यावहारिक हैं, किन्तु प्रणाली को समझने में सहायता करना बंद कर देते हैं। इसके अतिरिक्त, कॉम्पोनेन्ट डायनामिक रूप से वार्तालाप करते हैं, और वार्तालाप भौतिक हो सकती है या इसमें सूचनाओं का आदान-प्रदान सम्मिलित हो सकता है
  • इस तरह की अंतःक्रियाएँ समृद्ध होती हैं, अर्थात प्रणाली में कोई भी अवयव या सब-सिस्टम विभिन्न अन्य अवयवो या सब-सिस्टम्स से प्रभावित होती है और उन्हें प्रभावित करती है
  • इंटरैक्शन गैर-रैखिक हैं: इनपुट, भौतिक इंटरैक्शन या उत्तेजनाओं में छोटे परिवर्तन बड़े प्रभाव या आउटपुट में बहुत महत्वपूर्ण परिवर्तन का कारण बन सकते हैं
  • वार्तालाप प्राथमिक रूप से होती है, किन्तु विशेष रूप से निकटतम समूहों के साथ नहीं और प्रभाव की प्रकृति संशोधित होती है
  • कोई भी अंतःक्रिया सीधे या विभिन्न मध्यवर्ती चरणों के पश्चात स्वयं पर वापस आ सकती है। ऐसी प्रतिक्रिया गुणवत्ता में भिन्न हो सकती है। इसे पुनरावृत्ति के रूप में जाना जाता है
  • अवयवो की प्रणाली के समग्र व्यवहार की पूर्वानुमान व्यक्तिगत अवयवो के व्यवहार से नहीं की जाती है
  • ऐसे प्रणाली विवृत हो सकते हैं और प्रणाली की सीमाओं को परिभाषित करना कठिन या असंभव हो सकता है
  • काम्प्लेक्स सिस्टम गैर-संतुलन थर्मोडायनामिक्स स्थितियों के अनुसार कार्य करती हैं। प्रणाली के संगठन को बनाए रखने के लिए ऊर्जा का निरंतर प्रवाह होना चाहिए
  • काम्प्लेक्स सिस्टम्स का इतिहास होता है। वह विकसित होते हैं और उनका विगत उनके वर्तमान व्यवहार के लिए सह-उत्तरदायी होता है
  • प्रणाली के अवयव संपूर्ण प्रणाली के व्यवहार से अनभिज्ञ हो सकते हैं, वह केवल स्थानीय स्तर पर उपलब्ध जानकारी या भौतिक उत्तेजनाओं पर प्रतिक्रिया करते हैं

रॉबर्ट एक्सेलरोड और माइकल डी. कोहेन (अकादमिक) या माइकल डी. कोहेन मॉडलिंग परिप्रेक्ष्य से प्रमुख शब्दों की श्रृंखला की पहचान करते हैं:[28]

  • रणनीति, नियमबद्ध कार्य सूचि जो संकेत करता है कि किन परिस्थितियों में क्या करना है।
  • विरूपण साक्ष्य, भौतिक संसाधन जिसका निश्चित स्थान होता है और जो प्रतिनिधियो की कार्रवाई का उत्तर दे सकता है।
  • प्रतिनिधि, कलाकृतियों और अन्य प्रतिनिधियो के साथ वार्तालाप करने के लिए संपत्तियों, रणनीतियों और क्षमताओं का संग्रह है।
  • जनसंख्या, प्रतिनिधियो का संग्रह, या, कुछ स्थितियों में, रणनीतियों का संग्रह है।
  • प्रणाली, बड़ा संग्रह, जिसमें प्रतिनिधियो की या अधिक जनसंख्या और संभवतः कलाकृतियाँ भी सम्मिलित हैं
  • एक प्रकार, किसी जनसंख्या में सभी प्रतिनिधि (या रणनीतियाँ) जिनमें कुछ विशेषताएँ समान होती हैं
  • विविधता, किसी जनसंख्या या प्रणाली के अन्दर प्रकारों की विविधता है।
  • इंटरेक्शन पैटर्न, प्रणाली के अन्दर प्रकारों के मध्य संपर्क की आवर्ती नियमितता है।
  • अंतरिक्ष (भौतिक), भौगोलिक स्थान में स्थान और प्रतिनिधियो और कलाकृतियों का समय है।
  • स्थान (वैचारिक), श्रेणियों के सेट में स्थान संरचित जिससे निकट के प्रतिनिधि वार्तालाप कर सकते है।
  • चयन, प्रक्रियाएं जो विभिन्न प्रकार के प्रतिनिधियो या रणनीतियों की आवृत्ति में वृद्धि या कमी का कारण बनती हैं
  • सफलता मानदंड या प्रदर्शन के उपाय, अपेक्षाकृत सफल (या असफल) रणनीतियों या प्रतिनिधियो के चयन में श्रेय देने के लिए प्रतिनिधि या डिजाइनर द्वारा उपयोग किया जाने वाला स्कोर है।

टर्नर और बेकर ने साहित्य से काम्प्लेक्स अडैप्टिव सिस्टम्स की विशेषताओं को संश्लेषित किया और रचनात्मकता और नवीनता के संदर्भ में इन विशेषताओं का परीक्षण किया था।[29] इन आठ विशेषताओं में से प्रत्येक को रचनात्मकता और नवीन प्रक्रियाओं में उपस्थित दिखाया गया है:

  • पथ डिपेंडेंट: प्रणाली अपनी प्रारंभिक स्थितियों के प्रति संवेदनशील होते हैं। एक ही बल प्रणाली को पृथक-पृथक विधि से प्रभावित कर सकता है।[30]
  • प्रणालियों का एक इतिहास : किसी प्रणाली का इतिहास का व्यवहार उसके प्रारंभिक बिंदु और उसके पश्चात् के इतिहास पर निर्भर करता है।[31]
  • गैर-रैखिकता: पर्यावरणीय अस्तव्यस्तता पर असंगत रूप से प्रतिक्रिया करना है। परिणाम सरल प्रणाली से भिन्न होते हैं।[30][32]
  • उद्भव: प्रत्येक प्रणाली की आंतरिक डायनामिक उसकी परिवर्तित होने की क्षमता को इस प्रकार से प्रभावित करती है जो अन्य प्रणाली से अधिक भिन्न हो सकती है।[30]
  • अपरिवर्तनीय: अपरिवर्तनीय प्रक्रिया परिवर्तनों को उसकी मूल स्थिति में वापस नहीं लाया जा सकता है।[33]
  • अनुकूलता/अनुकूलनशीलता: जो प्रणाली एक साथ व्यवस्थित और अव्यवस्थित होती हैं वह अधिक अनुकूलनीय और लचीली होती हैं।[30]
  • व्यवस्था और अराजकता के मध्य कार्य करता है: अडैप्टिव टेंसन सिस्टम और उसके पर्यावरण के मध्य ऊर्जा अंतर से उभरता है।[33]
  • स्व-संगठन: प्रणाली अन्योन्याश्रितता, उसके भागों की परस्पर क्रिया और प्रणाली में विविधता से बने होते हैं।[30]

मॉडलिंग और सिमुलेशन

सीएएस को कभी-कभी एजेंट-बेस्ड मॉडल और काम्प्लेक्स नेटवर्क-बेस्ड मॉडल के माध्यम से तैयार किया जाता है।[34] इस प्रकार एजेंट-बेस्ड मॉडल विभिन्न विधियों और उपकरणों के माध्यम से विकसित किए जाते हैं, मुख्य रूप से पहले मॉडल के अंदर विभिन्न प्रतिनिधियो की पहचान की जाती है।[35] सीएएस के लिए मॉडल विकसित करने की अन्य विधि में विभिन्न सीएएस कॉम्पोनेन्ट के इंटरेक्शन डेटा का उपयोग करके काम्प्लेक्स नेटवर्क मॉडल विकसित करना सम्मिलित है।[36]

2013 में स्प्रिंगरओपन या स्प्रिंगरओपन/बायोमेड सेंट्रल ने काम्प्लेक्स अडैप्टिव सिस्टम मॉडलिंग (सीएएसएम) विषय पर ऑनलाइन ओपन-एक्सेस जर्नल लॉन्च किया था। पत्रिका का प्रकाशन 2020 में बंद हो गया था।[37]

सम्मिश्रता का विकास

सम्मिश्र के विकास में निष्क्रिय बनाम सक्रिय रुझान। प्रक्रियाओं की शुरुआत में सीएएस को लाल रंग में रंगा जाता है। सिस्टम की संख्या में परिवर्तन बार की ऊंचाई से दिखाए जाते हैं, ग्राफ़ का प्रत्येक सेट समय श्रृंखला में ऊपर बढ़ता है।

जीवित जीव काम्प्लेक्स अडैप्टिव सिस्टम हैं। चूंकि जीव विज्ञान में सम्मिश्र को मापना कठिन है, विकास ने कुछ उल्लेखनीय रूप से सम्मिश्र जीवों को जन्म दिया है।[38] इस अवलोकन ने विकास के गतिशील होने और उच्चतर जीवों के रूप में देखे जाने की ओर ले जाने की सामान्य गलत धारणा को जन्म दिया है।[39]

यदि यह सामान्यतः सही होता, तो विकास में सम्मिश्र की ओर सक्रिय प्रवृत्ति होती। जैसा कि नीचे दिखाया गया है, इस प्रकार की प्रक्रिया में सम्मिश्र की सबसे सामान्य मात्रा का मूल्य समय के साथ बढ़ेगा।[40] दरअसल, कुछ कृत्रिम जीवन सिमुलेशन ने सुझाव दिया है कि सीएएस की पीढ़ी विकास की अपरिहार्य विशेषता है।[41][42]

चूंकि, विकास में सम्मिश्र की ओर सामान्य प्रवृत्ति के विचार को निष्क्रिय प्रक्रिया के माध्यम से भी समझाया जा सकता है।[40] इसमें विचरण में वृद्धि सम्मिलित है किन्तु सबसे सामान्य मान, मोड (सांख्यिकी) नहीं परिवर्तित होता है। इस प्रकार, सम्मिश्र का अधिकतम स्तर समय के साथ बढ़ता है, किन्तु केवल कुछ अधिक जीवों के अप्रत्यक्ष उत्पाद के रूप में। इस प्रकार की यादृच्छिक प्रक्रिया को बाउंडेड यादृच्छिक चाल भी कहा जाता है।

इस परिकल्पना में, अधिक सम्मिश्र जीवों के प्रति स्पष्ट रुझान भ्रम है जो सम्मिश्र वितरण के स्केवनेस या दाहिने हाथ की पूंछ में रहने वाले बड़े, बहुत सम्मिश्र जीवों की छोटी संख्या पर ध्यान केंद्रित करने और सरल और बहुत अधिक सामान्य जीवों को नजरंदाज करने से उत्पन्न होता है। यह निष्क्रिय मॉडल इस तथ्य पर बल देता है कि अधिकांश प्रजातियाँ सूक्ष्मजीव प्रोकैरियोट्स हैं,[43] जिसमें विश्व का लगभग आधा बायोमास (पारिस्थितिकी) सम्मिलित है [44] और पृथ्वी की जैव विविधता के विशाल बहुमत का निर्माण करते हैं।[45] इसलिए, सरल जीवन पृथ्वी पर प्रभावी बना हुआ है, और सम्मिश्र जीवन केवल प्रारूपीकरण पूर्वाग्रह के कारण अधिक विविध दिखाई देता है।

यदि जीव विज्ञान में सम्मिश्र के प्रति समग्र प्रवृत्ति का अभाव है, तो यह स्थितियों के उप-समूह में प्रणाली को सम्मिश्र की ओर ले जाने वाली शक्तियों के अस्तित्व को नहीं रोकेगा। इस प्रकार इन छोटे रुझानों को अन्य विकासवादी दबावों द्वारा संतुलित किया जाएगा जो प्रणाली को कम सम्मिश्र स्थितियों की ओर ले जाते हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 "Insights from Complexity Theory: Understanding Organisations better". by Assoc. Prof. Amit Gupta, Student contributor – S. Anish, IIM Bangalore. Retrieved 1 June 2012.
  2. 2.0 2.1 "Ten Principles of Complexity & Enabling Infrastructures". by Professor Eve Mitleton-Kelly, Director Complexity Research Programme, London School of Economics. CiteSeerX 10.1.1.98.3514. {{cite journal}}: Cite journal requires |journal= (help)
  3. Miller, John H., and Scott E. Page (2007-01-01). Complex adaptive systems : an introduction to computational models of social life. Princeton University Press. ISBN 9781400835522. OCLC 760073369.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. 4.0 4.1 "Evolutionary Psychology, Complex Systems, and Social Theory" (PDF). Bruce MacLennan, Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville. eecs.utk.edu. Retrieved 25 August 2012.
  5. Foster, John (2006). "Why is economics not a complex systems science?" (PDF). Journal of Economic Issues. 40 (4): 1069–1091. doi:10.1080/00213624.2006.11506975. S2CID 17486106. Retrieved 2020-01-18.
  6. Lansing, J. Stephen (2003). "जटिल अनुकूली प्रणालियाँ". Annual Review of Anthropology. Annual Reviews. 32 (1): 183–204. doi:10.1146/annurev.anthro.32.061002.093440. ISSN 0084-6570.
  7. Auerbach, David (2016-01-19). "हर चीज़ का सिद्धांत और फिर कुछ". Slate (in English). ISSN 1091-2339. Retrieved 2017-03-07.
  8. Yolles, Maurice (2018). "The complexity continuum, Part 1: hard and soft theories". Kybernetes. 48 (6): 1330–1354. doi:10.1108/K-06-2018-0337. S2CID 69636750.
  9. Faucher, Jean-Baptiste. "A Complex Adaptive Organization Under the Lens of the LIFE Model:The Case of Wikipedia". Egosnet.org. Retrieved 25 August 2012.
  10. "Complex Adaptive Systems as a Model for Evaluating Organisational : Change Caused by the Introduction of Health Information Systems" (PDF). Kieren Diment, Ping Yu, Karin Garrety, Health Informatics Research Lab, Faculty of Informatics, University of Wollongong, School of Management, University of Wollongong, NSW. uow.edu.au. Archived from the original (PDF) on 5 September 2012. Retrieved 25 August 2012.
  11. Holland John H (2006). "जटिल अनुकूली प्रणालियों का अध्ययन" (PDF). Journal of Systems Science and Complexity. 19 (1): 1–8. doi:10.1007/s11424-006-0001-z. hdl:2027.42/41486. S2CID 27398208.
  12. 12.0 12.1 Steven Strogatz, Duncan J. Watts and Albert-László Barabási "explaining synchronicity (at 6:08), network theory, self-adaptation mechanism of complex systems, Six Degrees of separation, Small world phenomenon, events are never isolated as they depend upon each other (at 27:07) in the BBC / Discovery Documentary". BBC / Discovery. Retrieved 11 June 2012. "Unfolding the science behind the idea of six degrees of separation"
  13. "Toward a Complex Adaptive Intelligence Community The Wiki and the Blog". D. Calvin Andrus. Central Intelligence Agency. Archived from the original on 13 June 2007. Retrieved 25 August 2012.
  14. Solvit, Samuel (2012). "Dimensions of War: Understanding War as a Complex Adaptive System". L'Harmattan. Retrieved 25 August 2013.
  15. "The Internet Analyzed as a Complex Adaptive System". Retrieved 25 August 2012.
  16. "Cyberspace: The Ultimate Complex Adaptive System" (PDF). The International C2 Journal. Retrieved 25 August 2012. by Paul W. Phister Jr
  17. "Complex Adaptive Systems" (PDF). mit.edu. 2001. Retrieved 25 August 2012. by Serena Chan, Research Seminar in Engineering Systems
  18. Holland, John H. (John Henry) (1996). Hidden order: how adaptation builds complexity. Addison-Wesley. ISBN 0201442302. OCLC 970420200.
  19. Buckley, Walter; Schwandt, David; Goldstein, Jeffrey A. (2008). ""एक जटिल अनुकूली प्रणाली के रूप में समाज" का परिचय". E:CO Emergence: Complexity & Organization. 10 (3): 86–112. Retrieved 2020-11-02.
  20. Bentley, Chance; Anandhi, Aavudai (2020). "एक बेहतर वैचारिक मॉडल का उपयोग करके पारिस्थितिक तंत्र में ड्राइवर-प्रतिक्रिया जटिलता का प्रतिनिधित्व करना". Ecological Modelling. 437 (437): 109320. doi:10.1016/j.ecolmodel.2020.109320. Retrieved 2020-12-24.
  21. Buckley, Walter W. (1968). व्यवहार वैज्ञानिक के लिए आधुनिक प्रणाली अनुसंधान: एक स्रोतपुस्तिका. Aldine. ISBN 9780202369402. Retrieved 2020-11-02.
  22. Situngkir, Hokky (2004). "स्वार्थी मीम्स पर: संस्कृति एक जटिल अनुकूली प्रणाली के रूप में". Journal of Social Complexity. 2 (1): 20–32. Retrieved 2020-11-02.
  23. Frank, Roslyn M. (2008). "The Language–organism–species analogy: a complex adaptive systems approach to shifting perspectives on "language"". In Frank (ed.). सामाजिक-सांस्कृतिक स्थिति, वॉल्यूम। 2. De Gruyter. pp. 215–262. ISBN 978-3-11-019911-6. Retrieved 2020-11-02.
  24. 24.0 24.1 Axelrod, Robert M.; Cohen, M. D. (1999). जटिलता का दोहन: एक वैज्ञानिक सीमा के संगठनात्मक निहितार्थ. Free Press. ISBN 9780684867175.
  25. Gell-Mann, Murray (1994). "Complex adaptive systems" (PDF). In Cowan, G.; Pines, D.; Meltzer, D. (eds.). जटिलता के विज्ञान में अध्ययन, प्रोक। वॉल्यूम. उन्नीसवीं. Addison-Wesley. pp. 17–45. Retrieved 2020-11-06.
  26. Fromm, Jochen (2004). जटिलता का उद्भव. Kassel University Press. Retrieved 2020-11-06.
  27. Paul Cilliers (1998) Complexity and Postmodernism: Understanding Complex Systems
  28. Robert Axelrod & Michael D. Cohen, Harnessing Complexity. Basic Books, 2001
  29. Turner, J. R., & Baker, R. (2020). Just doing the do: A case study testing creativity and innovative processes as complex adaptive systems. New Horizons in Adult Education and Human Resource Development, 32(2). doi:10.1002/nha3.20283
  30. 30.0 30.1 30.2 30.3 30.4 Lindberg, C.; Schneider, M. (2013). "Combating infections at Maine Medical Center: Insights into complexity-informed leadership from positive deviance". Leadership. 9 (2): 229–253. doi:10.1177/1742715012468784. S2CID 144225216.
  31. Boal, K. B.; Schultz, P. L. (2007). "Storytelling, time, and evolution: The role of strategic leadership in complex adaptive systems". The Leadership Quarterly. 18 (4): 411–428. doi:10.1016/j.leaqua.2007.04.008.
  32. Luoma, M (2006). "A play of four arenas – How complexity can serve management development". Management Learning. 37: 101–123. doi:10.1177/1350507606058136. S2CID 14435060.
  33. 33.0 33.1 Borzillo, S.; Kaminska-Labbe, R. (2011). "जटिलता सिद्धांत लेंस के माध्यम से अभ्यास के समुदायों में ज्ञान निर्माण की गतिशीलता को उजागर करना". Knowledge Management Research & Practice. 9 (4): 353–366. doi:10.1057/kmrp.2011.13. S2CID 62134156.
  34. Muaz A. K. Niazi, Towards A Novel Unified Framework for Developing Formal, Network and Validated Agent-Based Simulation Models of Complex Adaptive Systems PhD Thesis
  35. John H. Miller & Scott E. Page, Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press Book page
  36. Melanie Mitchell, Complexity A Guided Tour, Oxford University Press, Book page
  37. Springer Complex Adaptive Systems Modeling Journal (CASM)
  38. Adami C (2002). "What is complexity?". BioEssays. 24 (12): 1085–94. doi:10.1002/bies.10192. PMID 12447974.
  39. McShea D (1991). "Complexity and evolution: What everybody knows". Biology and Philosophy. 6 (3): 303–24. doi:10.1007/BF00132234. S2CID 53459994.
  40. 40.0 40.1 Carroll SB (2001). "Chance and necessity: the evolution of morphological complexity and diversity". Nature. 409 (6823): 1102–9. Bibcode:2001Natur.409.1102C. doi:10.1038/35059227. PMID 11234024. S2CID 4319886.
  41. Furusawa C, Kaneko K (2000). "बहुकोशिकीय जीवों में जटिलता की उत्पत्ति". Phys. Rev. Lett. 84 (26 Pt 1): 6130–3. arXiv:nlin/0009008. Bibcode:2000PhRvL..84.6130F. doi:10.1103/PhysRevLett.84.6130. PMID 10991141. S2CID 13985096.
  42. Adami C, Ofria C, Collier TC (2000). "जैविक जटिलता का विकास". Proc. Natl. Acad. Sci. U.S.A. 97 (9): 4463–8. arXiv:physics/0005074. Bibcode:2000PNAS...97.4463A. doi:10.1073/pnas.97.9.4463. PMC 18257. PMID 10781045.
  43. Oren A (2004). "Prokaryote diversity and taxonomy: current status and future challenges". Philos. Trans. R. Soc. Lond. B Biol. Sci. 359 (1444): 623–38. doi:10.1098/rstb.2003.1458. PMC 1693353. PMID 15253349.
  44. Whitman W, Coleman D, Wiebe W (1998). "Prokaryotes: the unseen majority". Proc Natl Acad Sci USA. 95 (12): 6578–83. Bibcode:1998PNAS...95.6578W. doi:10.1073/pnas.95.12.6578. PMC 33863. PMID 9618454.
  45. Schloss P, Handelsman J (2004). "माइक्रोबियल जनगणना की स्थिति". Microbiol Mol Biol Rev. 68 (4): 686–91. doi:10.1128/MMBR.68.4.686-691.2004. PMC 539005. PMID 15590780.

साहित्य

बाहरी संबंध