असतत साइन परिवर्तन
गणित में, असतत साइन परिवर्तन (डीएसटी) फूरियर-संबंधित परिवर्तनों की सूची है, जिसमें फूरियर-संबंधित परिवर्तन असतत फूरियर रूपांतरण (डीएफटी) के समान है, अपितु यह पूर्ण रूप से वास्तविक संख्या आव्यूह (गणित) का उपयोग करता है। यह लगभग दोगुनी लंबाई के डीएफटी के काल्पनिक भागों के बराबर है, जो सम और विषम कार्यों की समरूपता के साथ वास्तविक डेटा पर कार्य करता है (चूंकि वास्तविक और विषम फ़ंक्शन का फूरियर रूपांतरण काल्पनिक और विषम है), जहां कुछ वेरिएंट में इनपुट और /या आउटपुट डेटा को आधे नमूने द्वारा स्थानांतरित किया जाता है।
साइन और साइन हाइपरबोलिक फ़ंक्शंस से बना परिवर्तनों के समूह में उपस्थित रहते हैं। ये परिवर्तन विभिन्न सीमा स्थितियों वाली पतली वर्गाकार प्लेटों के प्राकृतिक कंपन के आधार पर किए जाते हैं।[1]
डीएसटी असतत कोसाइन परिवर्तन (डीसीटी) से संबंधित है, जो वास्तविक और सम कार्यों के डीएफटी के बराबर है। इसके आधार पर सीमा स्थितियाँ विभिन्न डीसीटी और डीएसटी प्रकारों से कैसे संबंधित हैं, इसकी सामान्य चर्चा के लिए डीसीटी लेख देखें। सामान्यतः, डीएसटी को न्यूमैन सीमा स्थिति को x=0 पर डिरिचलेट स्थिति से प्रतिस्थापित करके डीसीटी से प्राप्त किया जाता है।[2] डीसीटी और डीएसटी दोनों का वर्णन नासिर अहमद (इंजीनियर), टी. नटराजन और के.आर. द्वारा किया गया था। 1974 में राव[3][4] टाइप-I डीएसटी (डीएसटी-I) का वर्णन बाद में अनिल के जैन (इलेक्ट्रिकल इंजीनियर, जन्म 1946) द्वारा किया गया था। इस प्रकार अनिल के. जैन द्वारा 1976 में, और टाइप-II डीएसटी (डीएसटी-II) का वर्णन तब एच.बी. केकरा और जे.के. 1978 में सोलंका द्वारा किया गया था।[5]
अनुप्रयोग
डीएसटी को वर्णक्रमीय तरीकों से आंशिक अंतर समीकरणों को हल करने में व्यापक रूप से नियोजित किया जाता है, जहां डीएसटी के विभिन्न प्रकार सरणी के दोनों सिरों पर थोड़ी अलग विषम/सम सीमा स्थितियों के अनुरूप होते हैं।
अनौपचारिक सिंहावलोकन
किसी भी फूरियर-संबंधित परिवर्तन की तरह, असतत साइन परिवर्तन (डीएसटी) विभिन्न आवृत्तियों और आयामों के साथ sinusoid के योग के संदर्भ में एक फ़ंक्शन या सिग्नल व्यक्त करते हैं। असतत फूरियर परिवर्तन (डीएफटी) की तरह, एक डीएसटी एक फ़ंक्शन पर असतत डेटा बिंदुओं की एक सीमित संख्या पर कार्य करता है। डीएसटी और डीएफटी के बीच स्पष्ट अंतर यह है कि पूर्व केवल साइन फ़ंक्शन का उपयोग करता है, जबकि बाद वाला कोसाइन और साइन दोनों (जटिल घातांक के रूप में) का उपयोग करता है। हालाँकि, यह दृश्य अंतर केवल एक गहरे अंतर का परिणाम है: एक डीएसटी डीएफटी या अन्य संबंधित परिवर्तनों की तुलना में विभिन्न सीमा स्थितियों को दर्शाता है।
फूरियर-संबंधित परिवर्तन जो किसी फ़ंक्शन के सीमित डोमेन पर कार्य करते हैं, जैसे कि डीएफटी या डीएसटी या फूरियर श्रृंखला, को डोमेन के बाहर उस फ़ंक्शन के विस्तार को स्पष्ट रूप से परिभाषित करने के रूप में माना जा सकता है। यानी एक बार जब आप कोई फंक्शन लिखते हैं साइनसोइड्स के योग के रूप में, आप किसी भी समय उस योग का मूल्यांकन कर सकते हैं , यहां तक के लिए मूल कहाँ है निर्दिष्ट नहीं किया गया था. डीएफटी, फूरियर श्रृंखला की तरह, मूल फ़ंक्शन के आवधिक फ़ंक्शन विस्तार को दर्शाता है। एक डीएसटी, साइन और कोसाइन रूपांतरण की तरह, मूल फ़ंक्शन के सम और विषम फ़ंक्शन विस्तार को दर्शाता है।
हालाँकि, क्योंकि डीएसटी परिमित, असतत अनुक्रमों पर कार्य करते हैं, दो मुद्दे उत्पन्न होते हैं जो निरंतर साइन परिवर्तन के लिए लागू नहीं होते हैं। सबसे पहले, किसी को यह निर्दिष्ट करना होगा कि क्या फ़ंक्शन डोमेन की बाएँ और दाएँ दोनों सीमाओं पर सम या विषम है (अर्थात क्रमशः नीचे दी गई परिभाषाओं में न्यूनतम-एन और अधिकतम-एन सीमाएँ)। दूसरा, किसी को यह निर्दिष्ट करना होगा कि फ़ंक्शन किस बिंदु पर सम या विषम है। विशेष रूप से, तीन समान दूरी वाले डेटा बिंदुओं के अनुक्रम (ए, बी, सी) पर विचार करें, और कहें कि हम एक विषम बाईं सीमा निर्दिष्ट करते हैं। दो समझदार संभावनाएँ हैं: या तो डेटा a से पहले के बिंदु के बारे में अजीब है, जिस स्थिति में विषम विस्तार (−c,−b,−a,0,a,b,c) है, या डेटा इसके बारे में अजीब है बिंदु a और पिछले बिंदु के बीच का आधा भाग है, इस स्थिति में विषम विस्तार (−c,−b,−a,a,b,c) है
ये विकल्प डीएसटी की सभी मानक विविधताओं और असतत कोसाइन परिवर्तन (डीसीटी) को जन्म देते हैं। प्रत्येक सीमा या तो सम या विषम हो सकती है (प्रति सीमा 2 विकल्प) और एक डेटा बिंदु या दो डेटा बिंदुओं के बीच के आधे बिंदु (प्रति सीमा 2 विकल्प) के बारे में सममित हो सकती है, कुल मिलाकर संभावनाएं. इनमें से आधी संभावनाएँ, जहाँ बाईं सीमा विषम है, 8 प्रकार के डीएसटी के अनुरूप हैं; अन्य आधे 8 प्रकार के डीसीटी हैं।
ये विभिन्न सीमा स्थितियाँ परिवर्तन के अनुप्रयोगों को दृढ़ता से प्रभावित करती हैं, और विभिन्न डीसीटी प्रकारों के लिए विशिष्ट रूप से उपयोगी गुणों को जन्म देती हैं। सबसे सीधे तौर पर, जब वर्णक्रमीय विधियों द्वारा आंशिक अंतर समीकरणों को हल करने के लिए फूरियर-संबंधित परिवर्तनों का उपयोग किया जाता है, तो सीमा स्थितियों को सीधे हल की जा रही समस्या के एक भाग के रूप में निर्दिष्ट किया जाता है।
परिभाषा
औपचारिक रूप से, असतत साइन परिवर्तन एक रैखिक, उलटा फ़ंक्शन (गणित) एफ: 'आर' हैएन -> आरएन (जहां 'आर' वास्तविक संख्याओं के सेट को दर्शाता है), या समकक्ष एन × एन वर्ग आव्यूह। थोड़ी संशोधित परिभाषाओं के साथ डीएसटी के कई प्रकार हैं। एन वास्तविक संख्या एक्स0,...,एक्सN − 1 एन वास्तविक संख्या एक्स में परिवर्तित हो जाते हैं0,...,एक्सN − 1 एक सूत्र के अनुसार:
डीएसटी-I
:
डीएसटी-I आव्यूह ऑर्थोगोनल आव्यूह (स्केल फैक्टर तक) है।
एक डीएसटी-आई बिल्कुल वास्तविक अनुक्रम के डीएफटी के बराबर है जो शून्य-वें और मध्य बिंदुओं के आसपास विषम है, जिसे 1/2 द्वारा स्केल किया गया है। उदाहरण के लिए, N=3 वास्तविक संख्याओं (a,b,c) का डीएसटी-I बिल्कुल आठ वास्तविक संख्याओं (0,a,b,c,0,−c,−b,−a) के DFT के बराबर है। (विषम समरूपता), 1/2 द्वारा बढ़ाया गया। (इसके विपरीत, डीएसटी प्रकार II-IV में समतुल्य DFT में आधा-नमूना बदलाव शामिल होता है।) यह साइन फ़ंक्शन के हर में N+1 का कारण है: समतुल्य DFT में 2(N+1) अंक होते हैं और इसकी साइनसॉइड आवृत्ति में 2π/2(N+1) है, इसलिए डीएसटी-I की आवृत्ति में π/(N+1) है।
इस प्रकार, डीएसटी-I सीमा शर्तों से मेल खाता है: xn n=−1 के आसपास विषम है और n=N के आसपास विषम है; इसी तरह एक्स के लिएk.
डीएसटी-II
डीएसटी-II का तात्पर्य सीमा शर्तों से है: xn n = −1/2 के आसपास विषम है और n = N −1/2 के आसपास विषम है; एक्सk k = −1 के आसपास विषम है और k = N −1 के आसपास भी विषम है।
डीएसटी-III
डीएसटी-III का तात्पर्य सीमा शर्तों से है: xn n==−1 के आसपास विषम है और n==N−1 के आसपास सम है; एक्सk k = −1/2 के आसपास विषम है और k = N −1/2 के आसपास विषम है।
डीएसटी-IV
डीएसटी-IV का तात्पर्य सीमा शर्तों से है: xn n==−1/2 के आसपास विषम है और n==N−1/2 के आसपास सम है; इसी तरह एक्स के लिएk.
डीएसटी वी-आठवीं
डीएसटी प्रकार I-IV सम क्रम के वास्तविक-विषम डीएफटी के बराबर हैं। सिद्धांत रूप में, वास्तव में तार्किक रूप से विषम क्रम के वास्तविक-विषम डीएफटी के अनुरूप चार अतिरिक्त प्रकार के असतत साइन परिवर्तन (मार्टुसी, 1994) हैं, जिनमें साइन तर्कों के हर में एन + 1/2 के कारक होते हैं। हालाँकि, व्यवहार में इन वेरिएंट का उपयोग शायद ही कभी किया जाता है।
उलटा रूपांतरण
डीएसटी-I का व्युत्क्रम डीएसटी-I को 2/(N+1) से गुणा किया जाता है। डीएसटी-IV का व्युत्क्रम डीएसटी-IV को 2/N से गुणा किया जाता है। डीएसटी-II का व्युत्क्रम डीएसटी-III को 2/N (और इसके विपरीत) से गुणा किया जाता है।
जहां तक असतत फूरियर रूपांतरण का सवाल है, इन परिवर्तन परिभाषाओं के सामने सामान्यीकरण कारक केवल एक परंपरा है और उपचारों के बीच भिन्न होता है। उदाहरण के लिए, कुछ लेखक परिवर्तनों को इससे गुणा करते हैं ताकि व्युत्क्रम को किसी अतिरिक्त गुणक कारक की आवश्यकता न हो।
गणना
हालाँकि इन सूत्रों के प्रत्यक्ष अनुप्रयोग के लिए O(N) की आवश्यकता होगी2) संचालन, फास्ट फूरियर परिवर्तन (एफएफटी) के समान गणना को गुणनखंडित करके केवल ओ (एन लॉग एन) जटिलता के साथ एक ही चीज़ की गणना करना संभव है। (कोई ओ(एन) पूर्व और बाद के प्रसंस्करण चरणों के साथ संयुक्त एफएफटी के माध्यम से डीएसटी की गणना भी कर सकता है।)
डीएसटी-III या डीएसटी-IV की गणना क्रमशः डीसीटी-III या डीसीटी-IV (असतत कोसाइन परिवर्तन देखें) से की जा सकती है, इनपुट के क्रम को उलट कर और हर दूसरे आउटपुट के संकेत को फ़्लिप करके, और डीएसटी के लिए इसके विपरीत -II डीसीटी-II से. इस प्रकार यह निम्नानुसार है कि डीएसटी के प्रकार II-IV को संबंधित डीसीटी प्रकारों के समान ही अंकगणितीय परिचालन (जोड़ और गुणा) की आवश्यकता होती है।
संदर्भ
- ↑ Abedi, M.; Sun, B.; Zheng, Z. (July 2019). "कंप्रेसिव सेंसिंग में संभावित अनुप्रयोगों के साथ परिवर्तनों का एक साइनसॉइडल-हाइपरबोलिक परिवार". IEEE Transactions on Image Processing. 28 (7): 3571–3583. Bibcode:2019ITIP...28.3571A. doi:10.1109/TIP.2019.2912355. PMID 31071031. S2CID 174820107.
- ↑ Britanak, Vladimir; Yip, Patrick C.; Rao, K. R. (2010). Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations. Elsevier. pp. 35–6. ISBN 9780080464640.
- ↑ Ahmed, Nasir; Natarajan, T.; Rao, K. R. (January 1974), "Discrete Cosine Transform" (PDF), IEEE Transactions on Computers, C-23 (1): 90–93, doi:10.1109/T-C.1974.223784, S2CID 149806273
- ↑ Ahmed, Nasir (January 1991). "मैं असतत कोसाइन परिवर्तन के साथ कैसे आया". Digital Signal Processing. 1 (1): 4–5. doi:10.1016/1051-2004(91)90086-Z.
- ↑ Dhamija, Swati; Jain, Priyanka (September 2011). "शोर आकलन के लिए एक उपयुक्त विधि के रूप में असतत साइन ट्रांसफॉर्म के लिए तुलनात्मक विश्लेषण". International Journal of Computer Science. 8 (5): 162–164. Retrieved 4 November 2019 – via ResearchGate.
ग्रन्थसूची
- S. A. Martucci, "Symmetric convolution and the discrete sine and cosine transforms," IEEE Trans. Signal Process. SP-42, 1038–1051 (1994).
- Matteo Frigo and Steven G. Johnson: FFTW, FFTW Home Page. A free (GPL) C library that can compute fast डीएसटीs (types I–IV) in one or more dimensions, of arbitrary size. Also M. Frigo and S. G. Johnson, "The Design and Implementation of FFTW3," Proceedings of the IEEE 93 (2), 216–231 (2005).
- Takuya Ooura: General Purpose FFT Package, FFT Package 1-dim / 2-dim. Free C & FORTRAN libraries for computing fast डीएसटीs in one, two or three dimensions, power of 2 sizes.
- Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007), "Section 12.4.1. Sine Transform", Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8.
- R. Chivukula and Y. Reznik, "Fast Computing of Discrete Cosine and Sine Transforms of Types VI and VII," Proc. SPIE Vol. 8135, 2011.