पर्ल्स विन्यास

From Vigyanwiki
Revision as of 09:13, 3 October 2023 by alpha>Sakshi
पर्ल्स विन्यास

ज्यामिति में, पर्ल्स कॉन्फ़िगरेशन यूक्लिडियन विमान में नौ बिंदुओं और नौ रेखाओं की प्रणाली है, जिसके लिए प्रत्येक संयोजनात्मक समतुल्य प्राप्ति के निर्देशांक में से एक के रूप में कम से कम अपरिमेय संख्या होती है। इसका निर्माण नियमित पंचभुज के विकर्णों और समरूपता रेखाओं में से एक को छोड़कर किया जा सकता है। बदले में, इसका उपयोग उच्च-आयामी उत्तल पॉलीटोप के निर्माण के लिए किया जा सकता है जिन्हें तर्कसंगत निर्देशांक नहीं दिया जा सकता है, जिसमें किसी भी ज्ञात उदाहरण के सबसे कम कोने होते हैं। प्रक्षेप्य तल में पर्ल्स विन्यास की सभी अनुभूतियाँ प्रक्षेप्य परिवर्तन के अनुसार एक दूसरे के समतुल्य हैं।

प्रक्षेप्य परिवर्तनों के अनुसार एक दूसरे के समअनुभूतियाँ प्रक्षेप्य परिवर्तन के अनुसार एक दूसरे के समतुल्य हैं।भूतियाँ प्रक्षेप्य परिवर्तन के अनुसार एक दूसरे के समतुल्य हैं।

निर्माण

पर्ल्स कॉन्फ़िगरेशन के निर्माण की विधि नियमित पंचकोण और उसके पांच विकर्णों से प्रारंभ करना है। ये विकर्ण बाहरी पंचकोण के अंदर स्थित छोटे आंतरिक पंचकोण की भुजाएँ बनाते हैं। बाहरी पंचभुज का प्रत्येक शीर्ष आंतरिक पंचभुज के शीर्ष के विपरीत स्थित है। विन्यास के नौ बिंदुओं में प्रत्येक पंचकोण के पांच में से चार शीर्ष और दो पंचकोणों का साझा केंद्र सम्मिलित है। प्रत्येक पंचभुज से दो विपरीत शीर्ष हटा दिए गए हैं।[1]

विन्यास की नौ रेखाओं में पाँच रेखाएँ सम्मिलित हैं जो बाहरी पंचकोण के विकर्ण और आंतरिक पंचभुज की भुजाएँ हैं, और चार रेखाएँ हैं जो केंद्र से होकर निकलती हैं और दो पंचकोणों के शीर्षों के विपरीत जोड़े से होकर निकलती हैं।[1]

प्रोजेक्टिव अपरिवर्तनशीलता और अतार्किकता

पर्ल्स कॉन्फ़िगरेशन की प्राप्ति को समान प्रतिच्छेदन पैटर्न के साथ किन्हीं नौ बिंदुओं और नौ रेखाओं से मिलकर परिभाषित किया गया है। इसका मतलब यह है कि बिंदु और रेखा एक दूसरे को प्राप्ति में प्रतिच्छेद करते हैं, यदि और केवल यदि वे नियमित पंचकोण से निर्मित विन्यास में प्रतिच्छेद करते हैं। यूक्लिडियन विमान में या, अधिक सामान्यतः, वास्तविक प्रक्षेप्य विमान में इस विन्यास का प्रत्येक अहसास, प्रक्षेप्य परिवर्तन के अनुसार, नियमित पंचकोण से इस तरह से निर्मित अहसास के बराबर है।[2]

क्योंकि क्रॉस-अनुपात, किन्हीं चार संरेख बिंदुओं से परिभाषित संख्या, प्रक्षेपी परिवर्तनों के अनुसार नहीं बदलती है, प्रत्येक प्राप्ति में चार बिंदु होते हैं जिनका क्रॉस-अनुपात नियमित से प्राप्त प्राप्ति में चार संरेख बिंदुओं के क्रॉस-अनुपात के समान होता है। पंचकोण. लेकिन, ये चार बिंदु हैं उनके क्रॉस-अनुपात के रूप में, कहाँ स्वर्णिम अनुपात, अपरिमेय संख्या है। तर्कसंगत निर्देशांक वाले प्रत्येक चार संरेख बिंदुओं में तर्कसंगत क्रॉस अनुपात होता है, इसलिए पर्ल्स कॉन्फ़िगरेशन को तर्कसंगत बिंदुओं द्वारा महसूस नहीं किया जा सकता है। ब्रैंको ग्रुनबाम ने अनुमान लगाया है कि प्रत्येक विन्यास जिसे अपरिमेय लेकिन परिमेय संख्याओं द्वारा महसूस किया जा सकता है, उसमें कम से कम नौ बिंदु होते हैं; यदि ऐसा है, तो पर्ल्स कॉन्फ़िगरेशन बिंदुओं और रेखाओं का सबसे छोटा संभव अपरिमेय विन्यास होगा।[2]

पॉलीहेड्रल कॉम्बिनेटरिक्स में अनुप्रयोग

पर्ल्स ने अपने विन्यास का उपयोग बारह शीर्षों के साथ आठ-आयामी उत्तल पॉलीटोप के निर्माण के लिए किया, जिसे वास्तविक निर्देशांक के साथ समान रूप से महसूस किया जा सकता है, लेकिन तर्कसंगत निर्देशांक के साथ नहीं। विन्यास के बिंदु, उनमें से तीन दोगुने हो गए और प्रत्येक बिंदु से जुड़े संकेतों के साथ, पॉलीटोप मोती के आंधी आरेख का निर्माण करते हैं। अर्नेस्ट स्टीनिट्ज़ के स्टीनिट्ज़ प्रमेय के प्रमाण का उपयोग यह दिखाने के लिए किया जा सकता है कि प्रत्येक त्रि-आयामी पॉलीटोप को तर्कसंगत निर्देशांक के साथ महसूस किया जा सकता है, लेकिन अब यह ज्ञात है कि चार आयामों में तर्कहीन पॉलीटोप मौजूद हैं। हालाँकि, पर्ल्स पॉलीटोप में किसी भी ज्ञात अपरिमेय पॉलीटोप की तुलना में सबसे कम शीर्ष हैं।[3]

इतिहास और संबंधित कार्य

पर्ल्स कॉन्फ़िगरेशन 1960 के दशक में मीका मोती द्वारा पेश किया गया था।[4] यह बिंदुओं और रेखाओं के अपरिमेय विन्यास का पहला ज्ञात उदाहरण नहीं है। Mac Lane (1936) 11-बिंदु उदाहरण का वर्णन करता है, जो दो के वर्गमूल के अनुरूप कॉन्फ़िगरेशन बनाने के लिए कार्ल जॉर्ज क्रिस्चियन वॉन स्टॉड # थ्रो के बीजगणित | वॉन स्टॉड के थ्रो के बीजगणित को लागू करके प्राप्त किया गया है।[5] नियमित प्रक्षेप्य विन्यास, बिंदुओं और रेखाओं की परिमित प्रणालियों के अध्ययन का लंबा इतिहास है जिसमें प्रत्येक बिंदु समान रूप से कई रेखाओं को छूता है और प्रत्येक रेखा समान रूप से कई बिंदुओं को छूती है। हालाँकि, इन विन्यासों के समान नाम दिए जाने के बावजूद, पर्ल्स विन्यास नियमित नहीं है: इसके अधिकांश बिंदु तीन रेखाओं को छूते हैं और इसकी अधिकांश रेखाएँ तीन बिंदुओं को छूती हैं, लेकिन चार बिंदुओं की रेखा होती है और चार रेखाओं पर बिंदु होता है। इस संबंध में यह पप्पस विन्यास से भिन्न है, जिसमें नौ बिंदु और नौ रेखाएं भी हैं, लेकिन प्रत्येक रेखा पर तीन बिंदु और प्रत्येक बिंदु से तीन रेखाएं होती हैं।[6]

टिप्पणियाँ

संदर्भ

  • Berger, Marcel (2010), "I.4 Three configurations of the affine plane and what has happened to them: Pappus, Desargues, and Perles", Geometry revealed, Berlin, New York: Springer-Verlag, pp. 17–23, doi:10.1007/978-3-540-70997-8, ISBN 978-3-540-70996-1, MR 2724440
  • Grünbaum, Branko (2003), Convex polytopes, Graduate Texts in Mathematics, vol. 221 (Second ed.), New York: Springer-Verlag, pp. 93–95, ISBN 978-0-387-00424-2, MR 1976856
  • Mac Lane, Saunders (1936), "Some interpretations of abstract linear dependence in terms of projective geometry", American Journal of Mathematics, 58 (1): 236–240, doi:10.2307/2371070, JSTOR 2371070, MR 1507146
  • Ziegler, Günter M. (2008), "Nonrational configurations, polytopes, and surfaces", The Mathematical Intelligencer, 30 (3): 36–42, arXiv:0710.4453, doi:10.1007/BF02985377, MR 2437198