जेनेरिक बिंदु

From Vigyanwiki

बीजगणितीय ज्यामिति में, एक बीजगणितीय किस्म 'एक्स' का एक सामान्य बिंदु 'पी' मोटे तौर पर बोल रहा है, एक बिंदु जिस पर सभी सामान्य संपत्ति सत्य हैं, एक सामान्य संपत्ति एक संपत्ति है जो लगभग हर जगह बिंदु के लिए सत्य है।

शास्त्रीय बीजगणितीय ज्यामिति में, एक affine बीजगणितीय विविधता का एक सामान्य बिंदु या प्रक्षेप्य बीजगणितीय विविधता का आयाम डी एक ऐसा बिंदु है, जिसके निर्देशांक द्वारा उत्पन्न क्षेत्र में गुणांक द्वारा उत्पन्न क्षेत्र पर पारगमन डिग्री डी होती है। विविधता के समीकरणों की।

योजना सिद्धांत में, एक अभिन्न डोमेन की अंगूठी के स्पेक्ट्रम में एक अद्वितीय सामान्य बिंदु है, जो शून्य आदर्श है। जैसा कि जरिस्की टोपोलॉजी के लिए इस बिंदु का बंद होना संपूर्ण स्पेक्ट्रम है, परिभाषा को सामान्य टोपोलॉजी तक बढ़ा दिया गया है, जहां एक टोपोलॉजिकल स्पेस 'एक्स' का एक सामान्य बिंदु एक ऐसा बिंदु है जिसका समापन 'एक्स' है।

परिभाषा और प्रेरणा

टोपोलॉजिकल स्पेस एक्सका एक सामान्य बिंदु एक बिंदु P है जिसका क्लोजर (टोपोलॉजी) सभी एक्सका है, यानी एक बिंदु जो एक्समें घना (टोपोलॉजी) है।[1] एक बीजगणितीय समुच्चय की उप-किस्मों के समुच्चय पर ज़रिस्की टोपोलॉजी के मामले से शब्दावली उत्पन्न होती है: बीजगणितीय समुच्चय अलघुकरणीय बीजगणितीय समुच्चय है (अर्थात, यह दो उचित बीजगणितीय उपसमुच्चयों का मिलन नहीं है) यदि और केवल यदि स्थलीय स्थान उप-किस्मों का एक सामान्य बिंदु है।

उदाहरण

  • एकमात्र हॉसडॉर्फ स्पेस जिसमें एक सामान्य बिंदु है, सिंगलटन सेट है।
  • स्कीम थ्योरी की किसी भी शब्दावली में एक (अद्वितीय) सामान्य बिंदु होता है; एक affine अभिन्न योजना (यानी, एक अभिन्न डोमेन की अंगूठी का स्पेक्ट्रम) के मामले में सामान्य बिंदु प्रमुख आदर्श (0) से जुड़ा बिंदु है।

इतिहास

बीजगणितीय ज्यामिति की अपनी नींव में विकसित आंद्रे वेइल के आधारभूत दृष्टिकोण में, सामान्य बिंदुओं ने एक महत्वपूर्ण भूमिका निभाई, लेकिन उन्हें एक अलग तरीके से संभाला गया। एक क्षेत्र (गणित) के पर एक बीजगणितीय किस्म वि के लिए, वि के सामान्य बिंदु वि के बिंदुओं का एक संपूर्ण वर्ग था, जो एक सार्वभौमिक डोमेन Ω में मान लेता है, एक बीजगणितीय रूप से बंद क्षेत्र जिसमें के होता है, लेकिन ताजा अनिश्चित की अनंत आपूर्ति भी होती है। इस दृष्टिकोण ने वि (के-ज़ारिस्की टोपोलॉजी, यानी) की टोपोलॉजी से सीधे निपटने की आवश्यकता के बिना काम किया, क्योंकि सभी विशेषज्ञताओं पर क्षेत्र स्तर पर चर्चा की जा सकती है (जैसा कि बीजगणितीय ज्यामिति के मूल्यांकन सिद्धांत दृष्टिकोण में लोकप्रिय है) 1930 के दशक)।

यह समान रूप से सामान्य बिंदुओं का एक विशाल संग्रह होने की कीमत पर था। द्वितीय विश्व युद्ध के ठीक बाद साओ पाउलो में वील्स के एक सहयोगी ऑस्कर ज़ारिस्की ने हमेशा जोर देकर कहा कि सामान्य बिंदु अद्वितीय होने चाहिए। (इसे टोपोलॉजिस्ट की शर्तों में वापस रखा जा सकता है: वील का विचार कोलमोगोरोव अंतरिक्ष देने में विफल रहता है और ज़रिस्की कोलमोगोरोव भागफल के संदर्भ में सोचता है।)

1950 के दशक के तेजी से मूलभूत परिवर्तनों में वील का दृष्टिकोण अप्रचलित हो गया। योजना सिद्धांत में, हालांकि, 1957 से, सामान्य बिंदु वापस आ गए: इस बार ला ज़रिस्की। उदाहरण के लिए आर के लिए असतत मूल्यांकन रिंग, Spec(आर) में दो बिंदु होते हैं, एक सामान्य बिंदु (प्रधान आदर्श {0} से आ रहा है) और एक 'बंद बिंदु' या 'विशेष बिंदु' अद्वितीय अधिकतम आदर्श से आता है। स्पेक (आर) के आकारिकी के लिए, विशेष बिंदु से ऊपर का फाइबर 'विशेष फाइबर' है, उदाहरण के लिए कमी मॉड्यूल पी, मोनोड्रोमी सिद्धांत और अध: पतन के बारे में अन्य सिद्धांतों में एक महत्वपूर्ण अवधारणा है। 'जेनेरिक फाइबर', समान रूप से, जेनेरिक बिंदु से ऊपर का फाइबर है। अध: पतन की ज्यामिति काफी हद तक सामान्य से विशेष तंतुओं के मार्ग के बारे में है, या दूसरे शब्दों में, मापदंडों की विशेषज्ञता कैसे मामलों को प्रभावित करती है। (असतत मूल्यांकन अंगूठी के लिए टोपोलॉजिकल स्पेस टोपोलॉजिस्ट का सीरपिंस्की अंतरिक्ष है। अन्य स्थानीय रिंगों में अद्वितीय सामान्य और विशेष बिंदु होते हैं, लेकिन एक अधिक जटिल स्पेक्ट्रम, क्योंकि वे सामान्य आयामों का प्रतिनिधित्व करते हैं। असतत मूल्यांकन मामला जटिल इकाई की तरह है। डिस्क, इन उद्देश्यों के लिए।)

संदर्भ

  1. Mumford, David (2005) [1999]. "II Preschemes". किस्मों और योजनाओं की लाल किताब. Springer. p. 67. doi:10.1007/978-3-540-46021-3_2. ISBN 978-3-540-46021-3.
  • Vickers, Steven (1989). Topology via Logic. Cambridge Tracts in Theoretic Computer Science. Vol. 5. p. 65. ISBN 0-521-36062-5.
  • Weil, André (1946). Foundations of Algebraic Geometry. American Mathematical Society Colloquium Publications. Vol. XXIX. ISBN 978-1-4704-3176-1. OCLC 1030398184.