मैट्रिक्स डिटर्मिनेंट लेम्मा

From Vigyanwiki
Revision as of 16:15, 6 November 2023 by Sugatha (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, विशेष रूप से रेखीय बीजगणित में, मैट्रिक्स डिटर्मिनेंट लेम्मा एक व्युत्क्रमणीय मैट्रिक्स A के योग के डिटर्मिनेंट की गणना करता है और स्तंभ सदिश u और एक पंक्ति सदिश vT के युग्मकीय गुणनफल, u-vT की गणना करता है।.[1][2]


कथन

मान लीजिए A एक व्युत्क्रमणीय वर्ग मैट्रिक्स है और u, v स्तंभ सदिश (ज्यामितीय) हैं। तब मैट्रिक्स डिटर्मिनेंट लेम्मा बताता है कि

यहाँ, uvT दो सदिश u और v का बाह्य गुणनफल है।

प्रमेय को A के सहायक मैट्रिक्स के संदर्भ में भी कहा जा सकता है:

किस स्तिथि में यह लागू होता है कि वर्ग मैट्रिक्स A विपरीत है या नहीं।

प्रमाण

पहले विशेष स्तिथि का प्रमाण A = I समानता से आता है:[3]

बाईं ओर का डिटर्मिनेंट तीन आव्यूहों के निर्धारकों का गुणनफल होता है। चूँकि पहला और तीसरा मैट्रिक्स इकाई विकर्ण के साथ त्रिकोणीय मैट्रिक्स हैं, उनके डिटर्मिनेंट केवल 1 है। मध्य मैट्रिक्स का डिटर्मिनेंट हमारा वांछित मूल्य है। दाहिने हाथ की ओर का डिटर्मिनेंट केवल (1 + vTu) है। तो हमारे पास निम्न परिणाम है:

तब सामान्य स्थिति को इस प्रकार पाया जा सकता हैː


आवेदन

यदि A का डिटर्मिनेंट और व्युत्क्रम पहले से ही ज्ञात हैं, तो सूत्र मैट्रिक्स uvT द्वारा संशोधित A के डिटर्मिनेंट की गणना करने के लिए एक संख्यात्मक रूप से सस्ता तरीका प्रदान करता है। गणना अपेक्षाकृत अल्पमूल्य है क्योंकि A + uvT के डिटर्मिनेंट को खरोंच से गणना करने की आवश्यकता नहीं है (जो सामान्य रूप से महंगा है)। u और/या v के लिए ईकाई सदिश का उपयोग करके, A के अलग-अलग क्रम, पंक्तियों या तत्वों [4] में छलयोजना किया जा सकता है और इस तरह से अपेक्षाकृत अल्पमूल्य में एक संबंधित अद्यतन डिटर्मिनेंट की गणना की जा सकती है।

जब मैट्रिक्स डिटर्मिनेंट लेम्मा का उपयोग शर्मन-मॉरिसन सूत्र के संयोजन में किया जाता है, तो व्युत्क्रम और डिटर्मिनेंट दोनों को आसानी से एक साथ अद्यतन किया जा सकता है।

सामान्यीकरण

मान लीजिए A एक उलटा n-दर-n मैट्रिक्स है और U, V n-दर-m मैट्रिक्स हैं। तब

विशेष स्तिथि में यह वेनस्टाइन-एरोन्सजन अस्मिता है।

अतिरिक्त रूप से एक व्युत्क्रमणीय m-दर-m मैट्रिक्स 'W' दिए जाने पर, संबंध को इस रूप में भी व्यक्त किया जा सकता है


यह भी देखें

  • शर्मन-मॉरिसन सूत्र, जो दिखाता है कि (A + uvT)-1 प्राप्त करने के लिए व्युत्क्रम A−1 का कैसे नवीनीकरण किया जाए।
  • वुडबरी सूत्र, जो दर्शाता है कि (A + UCVT)-1 प्राप्त करने के लिए व्युत्क्रम A−1 का कैसे नवीनीकरण किया जाए।
  • (A + UCVT)−1 के लिए द्विपद व्युत्क्रम प्रमेय।

संदर्भ

  1. Harville, D. A. (1997). एक सांख्यिकीविद् के दृष्टिकोण से मैट्रिक्स बीजगणित. New York: Springer-Verlag. ISBN 0-387-94978-X.
  2. Brookes, M. (2005). "मैट्रिक्स संदर्भ मैनुअल (ऑनलाइन)".
  3. Ding, J., Zhou, A. (2007). "Eigenvalues of rank-one updated matrices with some applications". Applied Mathematics Letters. 20 (12): 1223–1226. doi:10.1016/j.aml.2006.11.016. ISSN 0893-9659.{{cite journal}}: CS1 maint: uses authors parameter (link)