पैरावेक्टर
पैरावेक्टर नाम का उपयोग किसी भी क्लिफोर्ड बीजगणित में अदिश और वेक्टर के संयोजन के लिए किया जाता है, जिसे भौतिकविदों के मध्य ज्यामितीय बीजगणित के रूप में जाना जाता है।
यह नाम जे.जी. मैक्स द्वारा 1989 में टेक्नीश यूनिवर्सिटिट डेल्फ़्ट, नीदरलैंड में डॉक्टरेट शोध प्रबंध में दिया गया था।
तीन आयामों की यूक्लिडियन समष्टि के संदर्भ में संबंधित उच्च ग्रेड सामान्यीकरण के साथ पैरावेक्टरों का पूर्ण बीजगणित, डेविड हेस्टेनेस द्वारा प्रस्तुत किए गए स्पेसटाइम बीजगणित (एसटीए) का वैकल्पिक दृष्टिकोण है। इस वैकल्पिक बीजगणित को भौतिक स्थान का बीजगणित (एपीएस) भी कहा जाता है।
मूल सिद्धांत
यूक्लिडियन समष्टि के लिए, मूल सिद्धांत यह दर्शाता है कि वेक्टर का मूल सिद्धांत स्वयं लंबाई वर्ग का अदिश मान है (धनात्मक)
लिखना
और इसे मूल सिद्धांत की अभिव्यक्ति में सम्मिलित करना
मूल सिद्धांत की फिर से अपील करने पर हमें निम्नलिखित अभिव्यक्ति मिलती है
जो अनुमति देता है
दो सदिशों के अदिश गुणनफल को इस प्रकार पहचानें
महत्वपूर्ण परिणाम के रूप में हम यह निष्कर्ष निकालते हैं कि दो ऑर्थोगोनल वैक्टर (शून्य अदिश मूल सिद्धांत के साथ) एंटीकम्यूट हैं
त्रि-आयामी यूक्लिडियन समष्टि
निम्नलिखित सूची इसके पूर्ण आधार का उदाहरण प्रस्तुत करती है समष्टि,
जो आठ-आयामी स्थान बनाता है, जहां उदाहरण के लिए, एकाधिक सूचकांक संबंधित आधार वैक्टर के मूल सिद्धांत को दर्शाते हैं
आधार तत्व का ग्रेड वेक्टर बहुलता के संदर्भ में परिभाषित किया गया है, जैसे कि
Grade | Type | Basis element/s |
---|---|---|
0 | Unitary real scalar | |
1 | Vector | |
2 | Bivector | |
3 | Trivector volume element |
मूल सिद्धांत के अनुसार, दो अलग-अलग आधार वेक्टर एंटीकम्यूट,
या दूसरे शब्दों में,
इसका मतलब है कि आयतन तत्व वर्गों को
इसके अलावा, वॉल्यूम तत्व के किसी अन्य तत्व के साथ आवागमन करता है बीजगणित, ताकि इसे सम्मिश्र संख्या से पहचाना जा सके , जब भी भ्रम का कोई खतरा न हो। वास्तव में, आयतन तत्व वास्तविक अदिश के साथ मानक जटिल बीजगणित के लिए बीजगणित समरूपी बनाता है। वॉल्यूम तत्व का उपयोग इसके समतुल्य रूप को फिर से लिखने के लिए किया जा सकता है आधार के रूप में
Grade | Type | Basis element/s |
---|---|---|
0 | Unitary real scalar | |
1 | Vector | |
2 | Bivector |
|
3 | Trivector volume element |
|
पैरावेक्टर्स
संबंधित पैरावेक्टर आधार जो वास्तविक अदिश और सदिशों को जोड़ता है, वह है
- ,
जो चार आयामी रैखिक स्थान बनाता है। त्रि-आयामी यूक्लिडियन समष्टि में पैरावेक्टर स्थान भौतिक स्थान के बीजगणित (एपीएस) में व्यक्त विशेष सापेक्षता के समष्टि-समय का प्रतिनिधित्व करने के लिए इसका उपयोग किया जा सकता है।
इकाई को अदिश के रूप में लिखना सुविधाजनक है , ताकि संपूर्ण आधार को संक्षिप्त रूप में इस प्रकार लिखा जा सकता है
जहां ग्रीक सूचकांक जैसे से भागो को .
एंटीऑटोमोर्फिज्म
प्रत्यावर्तन संयुग्मन
प्रत्यावर्तन एंटीऑटोमोर्फिज्म को निरूपित किया जाता है . इस संयुग्मन की क्रिया ज्यामितीय मूल सिद्धांत (सामान्य रूप से क्लिफोर्ड संख्याओं के मध्य मूल सिद्धांत) के क्रम को उलटना है।
- ,
जहां सदिश और वास्तविक अदिश संख्याएं अपरिवर्तनीय हैं प्रत्यावर्तन संयुग्मन और वास्तविक कहा जाता है, उदाहरण के लिए:
दूसरी ओर, ट्राइवेक्टर और बायवेक्टर प्रत्यावर्तन के तहत संकेत बदलते हैं संयुग्मन और विशुद्ध रूप से काल्पनिक कहा जाता है। प्रत्येक आधार तत्व पर लागू प्रत्यावर्तन संयुग्मन दिया गया है नीचे
Element | Reversion conjugation |
---|---|
क्लिफोर्ड संयुग्मन
क्लिफोर्ड संयुग्मन को वस्तु के ऊपर बार द्वारा दर्शाया जाता है
. इस संयुग्मन को बार संयुग्मन भी कहा जाता है।
क्लिफोर्ड संयुग्मन ग्रेड इनवोल्यूशन और रिवर्सन की संयुक्त क्रिया है।
पैरावेक्टर पर क्लिफ़ोर्ड संयुग्मन की क्रिया के चिह्न को उल्टा करना है उदाहरण के लिए, सदिश, वास्तविक अदिश संख्याओं के चिह्न को बनाए रखते हुए
ऐसा अदिश और सदिश दोनों के प्रत्यावर्तन के अपरिवर्तनीय होने के कारण है (यह असंभव है)। या किसी चीज़ के क्रम को उलटने के लिए) और अदिश शून्य क्रम के होते हैं और इसी तरह के भी होते हैं सम ग्रेड जबकि वेक्टर विषम ग्रेड के होते हैं और इसलिए ग्रेड इन्वॉल्वमेंट के तहत संकेत परिवर्तन से गुजरना पड़ता है।
एंटीऑटोमोर्फिज्म के रूप में, क्लिफोर्ड संयुग्मन को इस प्रकार वितरित किया जाता है
प्रत्येक आधार तत्व पर लागू बार संयुग्मन दिया गया है नीचे
Element | Bar conjugation |
---|---|
- ध्यान दें- बार संयुग्मन के अंतर्गत आयतन तत्व अपरिवर्तनीय है।
ग्रेड ऑटोमोर्फिज्म
ग्रेड ऑटोमोर्फिज्म
इसे प्रत्यावर्तन संयुग्मन और क्लिफ़ोर्ड संयुग्मन दोनों की समग्र क्रिया के रूप में परिभाषित किया गया है और इसका प्रभाव सम-ग्रेड मल्टीवेक्टरों को अपरिवर्तनीय बनाए रखते हुए, विषम-ग्रेड मल्टीवेक्टरों के चिह्न को उलटने का है:
Element | Grade involution |
---|---|
संयुग्मन के अनुसार अपरिवर्तनीय उपसमष्टि
चार विशेष उपसमष्टि को परिभाषित किया जा सकता है समष्टि प्रत्यावर्तन और क्लिफोर्ड संयुग्मन के तहत उनकी समरूपता के आधार पर
- अदिश उपसमष्टि: क्लिफोर्ड संयुग्मन के तहत अपरिवर्तनीय।
- वेक्टर उपसमष्टि: क्लिफोर्ड संयुग्मन के तहत उलट चिन्ह।
- वास्तविक उपसमष्टि: प्रत्यावर्तन संयुग्मन के अंतर्गत अपरिवर्तनीय।
- काल्पनिक उपसमष्टि: प्रत्यावर्तन संयुग्मन के अंतर्गत व्युत्क्रम चिह्न।
दिया गया सामान्य क्लिफ़ोर्ड संख्या के रूप में, पूरक अदिश और सदिश भाग द्वारा दिए गए हैं क्लिफोर्ड संयुग्मन के साथ सममित और एंटीसिमेट्रिक संयोजन
- .
इसी प्रकार, के पूरक वास्तविक और काल्पनिक भाग दिया जाता है प्रत्यावर्तन संयुग्मन के साथ सममित और एंटीसिमेट्रिक संयोजनों द्वारा
- .
नीचे सूचीबद्ध चार चौराहों को परिभाषित करना संभव है
निम्नलिखित तालिका संबंधित उप-स्थानों के ग्रेड का सारांश प्रस्तुत करती है, उदाहरण के लिए, ग्रेड 0 को रियल और स्केलर उप-स्थानों के प्रतिच्छेदन के रूप में देखा जा सकता है
Real | Imaginary | |
---|---|---|
Scalar | 0 | 3 |
Vector | 1 | 2 |
- टिप्पणी: काल्पनिक शब्द का प्रयोग के संदर्भ में किया जाता है बीजगणित और किसी भी रूप में मानक जटिल संख्याओं का परिचय नहीं देता है।
मूल सिद्धांत के संबंध में बंद उपसमष्टि
ऐसे दो उपसमष्टि हैं जो मूल सिद्धांत के संबंध में बंद हैं। वे अदिश स्थान और सम स्थान हैं जो जटिल संख्याओं और चतुष्कोणों के प्रसिद्ध बीजगणित के साथ समरूपी हैं।
- ग्रेड 0 और 3 से बना अदिश स्थान सम्मिश्र संख्याओं के मानक बीजगणित के साथ समरूपी है, जिसकी पहचान की जाती है
- ग्रेड 0 और 2 के तत्वों से बना सम स्थान, चतुर्भुज के बीजगणित की पहचान के साथ समरूपी है
अदिश गुणनफल
दो पैरावेक्टर दिए गए और , अदिश गुणनफल का सामान्यीकरण है
पैरावेक्टर का परिमाण वर्ग है
जो निश्चित द्विरेखीय रूप नहीं है और शून्य के बराबर हो सकता है, भले ही पैरावेक्टर शून्य के बराबर न हो।
यह बहुत ही विचारोत्तेजक है कि पैरावेक्टर स्पेस स्वचालित रूप से मिन्कोवस्की स्थान की मीट्रिक का पालन करता है क्योंकि
खास तरीके से:
बिपरवेक्टर
दो पैरावेक्टर दिए गए और , द्विपरवेक्टर B है के रूप में परिभाषित:
- .
द्विपरवेक्टर आधार को इस प्रकार लिखा जा सकता है
जिसमें वास्तविक और काल्पनिक शब्दों सहित छह स्वतंत्र तत्व सम्मिलित हैं। तीन वास्तविक तत्व (वैक्टर)।
और तीन काल्पनिक तत्व (बायवेक्टर)।
कहाँ 1 से 3 तक चलाएँ.
भौतिक स्थान के बीजगणित में, विद्युत चुम्बकीय क्षेत्र को द्विपरवेक्टर के रूप में व्यक्त किया जाता है
जहां विद्युत और चुंबकीय क्षेत्र दोनों वास्तविक वेक्टर हैं
और स्यूडोस्केलर वॉल्यूम तत्व का प्रतिनिधित्व करता है।
बाइपरवेक्टर का अन्य उदाहरण समष्टि-समय घूर्णन दर का प्रतिनिधित्व है जिसे इस प्रकार व्यक्त किया जा सकता है
तीन साधारण घूर्णन कोण चर के साथ और तीन लोरेंत्ज़ फ़ैक्टर#रैपिडिटी .
ट्राइपारावेक्टर
तीन पैरावेक्टर दिए गए , और , त्रिपारावेक्टर टी है के रूप में परिभाषित:
- .
त्रिपारावेक्टर आधार को इस प्रकार लिखा जा सकता है
लेकिन केवल चार स्वतंत्र त्रिपारावेक्टर हैं, इसलिए इसे कम किया जा सकता है
- .
स्यूडोस्केलर
स्यूडोस्केलर आधार है
लेकिन गणना से पता चलता है कि इसमें केवल ही पद है। यह शब्द आयतन तत्व है .
जोड़े के संयोजन में लिए गए चार ग्रेड, पैरावेक्टर, बाइपारावेक्टर और ट्रिपारावेक्टर समष्टि उत्पन्न करते हैं जैसा कि अगली तालिका में दिखाया गया है, उदाहरण के लिए, हम देखते हैं कि पैरावेक्टर ग्रेड 0 और 1 से बना है
1 | 3 | |
---|---|---|
0 | Paravector | Scalar/Pseudoscalar |
2 | Biparavector | Triparavector |
पैराग्रेडिएंट
पैराग्रेडिएंट ऑपरेटर, पैरावेक्टर स्पेस में ग्रेडिएंट ऑपरेटर का सामान्यीकरण है। मानक पैरावेक्टर आधार में पैराग्रेडिएंट है
जो किसी को डी'अलेम्बर्ट ऑपरेटर को इस प्रकार लिखने की अनुमति देता है
मानक ग्रेडिएंट ऑपरेटर को स्वाभाविक रूप से परिभाषित किया जा सकता है
ताकि पैराग्रेडिएंट को इस प्रकार लिखा जा सके
कहाँ .
पैराग्रेडिएंट ऑपरेटर का प्रयोग सावधानीपूर्वक किया जाना चाहिए, हमेशा इसकी गैर-कम्यूटेटिव प्रकृति का सम्मान करते हुए। उदाहरण के लिए, व्यापक रूप से प्रयुक्त व्युत्पन्न है
कहाँ निर्देशांकों का अदिश फलन है।
पैराग्रेडिएंट ऑपरेटर है जो फ़ंक्शन स्केलर फ़ंक्शन होने पर हमेशा बाईं ओर से कार्य करता है। हालाँकि, यदि फ़ंक्शन अदिश नहीं है, तो पैराग्रेडिएंट दाईं ओर से भी कार्य कर सकता है। उदाहरण के लिए, निम्नलिखित अभिव्यक्ति का विस्तार इस प्रकार किया गया है
प्रोजेक्टर के रूप में शून्य पैरावेक्टर
अशक्त पैरावेक्टर वे तत्व हैं जो आवश्यक रूप से शून्य नहीं हैं लेकिन उनका परिमाण शून्य के समान है। अशक्त पैरावेक्टर के लिए , यह संपत्ति आवश्यक रूप से निम्नलिखित पहचान को दर्शाती है
विशेष सापेक्षता के संदर्भ में इन्हें लाइटलाइक पैरावेक्टर भी कहा जाता है।
प्रोजेक्टर प्रपत्र के शून्य पैरावेक्टर हैं
कहाँ इकाई सदिश है.
प्रोजेक्टर इस फॉर्म में पूरक प्रोजेक्टर है
ऐसा है कि
प्रोजेक्टर के रूप में, वे निष्क्रिय हैं
और का दूसरे पर प्रक्षेपण शून्य है क्योंकि वे शून्य पैरावेक्टर हैं
प्रोजेक्टर के संबंधित यूनिट वेक्टर को इस प्रकार निकाला जा सकता है
इस का मतलब है कि ऑपरेटर है eigenfunctions के साथ और
, संबंधित eigenvalues के साथ और .
पिछले परिणाम से, निम्नलिखित पहचान मान्य है शून्य के आसपास विश्लेषणात्मक है
इससे पैकवूमन संपत्ति की उत्पत्ति होती है, जिससे निम्नलिखित पहचान संतुष्ट होती है
पैरावेक्टर स्पेस के लिए शून्य आधार
तत्वों का आधार, उनमें से प्रत्येक शून्य, पूर्णता के लिए बनाया जा सकता है
समष्टि। रुचि का आधार निम्नलिखित है
ताकि मनमाना पैरावेक्टर
के रूप में लिखा जा सकता है
यह प्रतिनिधित्व कुछ प्रणालियों के लिए उपयोगी है जो स्वाभाविक रूप से के संदर्भ में व्यक्त की जाती हैं प्रकाश शंकु चर जो के गुणांक हैं और
क्रमश।
पैरावेक्टर स्पेस में प्रत्येक अभिव्यक्ति को शून्य आधार के रूप में लिखा जा सकता है। पैरावेक्टर सामान्यतः दो वास्तविक अदिश संख्याओं द्वारा परिचालित किया जाता है
और सामान्य अदिश संख्या (अदिश और स्यूडोस्केलर संख्याओं सहित)
शून्य आधार में पैराग्रेडिएंट है
उच्च आयाम
एन-आयामी यूक्लिडियन स्पेस ग्रेड एन (एन-वेक्टर) के मल्टीवेक्टर के अस्तित्व की अनुमति देता है। वेक्टर स्पेस का आयाम स्पष्ट रूप से n के बराबर है और सरल संयोजन विश्लेषण से पता चलता है कि बायवेक्टर स्पेस का आयाम है . सामान्य तौर पर, ग्रेड एम के मल्टीवेक्टर स्पेस का आयाम है और संपूर्ण क्लिफ़ोर्ड बीजगणित का आयाम है .
सजातीय ग्रेड वाला दिया गया मल्टीवेक्टर या तो अपरिवर्तनीय है या प्रत्यावर्तन संयुग्मन की कार्रवाई के तहत संकेत बदलता है . जो तत्व अपरिवर्तित रहते हैं उन्हें हर्मिटियन के रूप में परिभाषित किया जाता है और जो तत्व संकेत बदलते हैं उन्हें एंटी-हर्मिटियन के रूप में परिभाषित किया जाता है। इस प्रकार ग्रेडों को इस प्रकार वर्गीकृत किया जा सकता है:
Grade | Classification |
---|---|
Hermitian | |
Hermitian | |
Anti-Hermitian | |
Anti-Hermitian | |
Hermitian | |
Hermitian | |
Anti-Hermitian | |
Anti-Hermitian | |
आव्यूह प्रतिनिधित्व
का बीजगणित पॉल के आव्यूह बीजगणित के लिए समष्टि समरूपी है जैसे कि
Matrix representation 3D | Explicit matrix | |
---|---|---|
| ||
| ||
| ||
|
जिससे शून्य आधार तत्व बन जाते हैं
3डी में सामान्य क्लिफ़ोर्ड संख्या को इस प्रकार लिखा जा सकता है
जहां गुणांक अदिश तत्व हैं (छद्मस्केलर सहित)। सूचकांकों को इस प्रकार चुना गया कि पाउली मैट्रिसेस के संदर्भ में इस क्लिफोर्ड संख्या का प्रतिनिधित्व हो
संयुग्मन
प्रत्यावर्तन संयुग्मन को हर्मिटियन संयुग्मन में अनुवादित किया गया है और बार संयुग्मन को निम्नलिखित आव्यूह में अनुवादित किया गया है:
जैसे कि अदिश भाग का अनुवाद इस प्रकार किया जाता है
शेष उपसमष्टि का अनुवाद इस प्रकार किया गया है
उच्च आयाम
उच्च आयामों में यूक्लिडियन स्थान का आव्यूह प्रतिनिधित्व पाउली मैट्रिसेस के क्रोनकर मूल सिद्धांत के संदर्भ में बनाया जा सकता है, जिसके परिणामस्वरूप आयाम के जटिल आव्यूह होते हैं . 4D प्रतिनिधित्व के रूप में लिया जा सकता है
Matrix representation 4D | |
---|---|
| |
| |
| |
|
7D प्रतिनिधित्व के रूप में लिया जा सकता है
Matrix representation 7D | |
---|---|
| |
| |
| |
| |
| |
| |
|
लाई बीजगणित
क्लिफ़ोर्ड बीजगणित का उपयोग किसी भी शास्त्रीय लाई बीजगणित का प्रतिनिधित्व करने के लिए किया जा सकता है। सामान्य तौर पर एंटी-हर्मिटियन तत्वों का उपयोग करके कॉम्पैक्ट समूहों के लाई बीजगणित की पहचान करना संभव है, जिसे हर्मिटियन तत्वों को जोड़कर गैर-कॉम्पैक्ट समूहों तक बढ़ाया जा सकता है।
एन-डायमेंशनल यूक्लिडियन स्पेस के बायवेक्टर हर्मिटियन तत्व हैं और इसका उपयोग प्रतिनिधित्व करने के लिए किया जा सकता है लाई बीजगणित.
त्रि-आयामी यूक्लिडियन समष्टि के द्विभाजक बनाते हैं लाई बीजगणित, जो समरूपी है तक लाई बीजगणित. यह आकस्मिक समरूपता इसकी ज्यामितीय व्याख्या को चित्रित करने की अनुमति देती है बलोच क्षेत्र का उपयोग करके दो आयामी हिल्बर्ट समष्टि की स्थिति। उन प्रणालियों में से स्पिन 1/2 कण है। h> लाई बीजगणित को तीन एकात्मक सदिशों को जोड़कर लाई बीजगणित समरूपी बनाने के लिए बढ़ाया जा सकता है तक लाई बीजगणित, जो लोरेंत्ज़ समूह का दोहरा आवरण है . यह समरूपता के आधार पर विशेष सापेक्षता की औपचारिकता विकसित करने की संभावना की अनुमति देता है , जो किया जाता है भौतिक स्थान के बीजगणित के रूप में।
स्पिन लाई बीजगणित और ए के मध्य केवल अतिरिक्त आकस्मिक समरूपता है लाई बीजगणित. यह के मध्य समरूपता है और .
के मध्य और दिलचस्प समरूपता मौजूद है और . इतना
लाई बीजगणित का उपयोग उत्पन्न करने के लिए किया जा सकता है समूह। इसके बावजूद यह ग्रुप
से छोटा है समूह, यह चार-आयामी हिल्बर्ट समष्टि को फैलाने के लिए पर्याप्त माना जाता है।
यह भी देखें
- भौतिक स्थान का बीजगणित
- भौतिक स्थान के बीजगणित में डायराक समीकरण
संदर्भ
पाठ्यपुस्तकें
- Baylis, William (2002). Electrodynamics: A Modern Geometric Approach (2nd ed.). Birkhäuser. ISBN 0-8176-4025-8
- Baylis, William, Clifford (Geometric) Algebras With Applications in Physics, Mathematics, and Engineering, Birkhauser (1999)
- [H1999] David Hestenes: New Foundations for Classical Mechanics (Second Edition). ISBN 0-7923-5514-8, Kluwer Academic Publishers (1999)
- Chris Doran and Antony Lasenby, Geometric Algebra for Physicists, Cambridge, 2003
लेख
- Baylis, W E (2004-11-01). "परिचयात्मक भौतिकी में सापेक्षता". Canadian Journal of Physics. Canadian Science Publishing. 82 (11): 853–873. arXiv:physics/0406158. Bibcode:2004CaJPh..82..853B. doi:10.1139/p04-058. ISSN 0008-4204. S2CID 35027499.
- Doran, C.; Hestenes, D.; Sommen, F.; Van Acker, N. (1993). "समूहों को स्पिन समूहों के रूप में झूठ बोलें". Journal of Mathematical Physics. AIP Publishing. 34 (8): 3642–3669. Bibcode:1993JMP....34.3642D. doi:10.1063/1.530050. ISSN 0022-2488.
- Cabrera, R.; Rangan, C.; Baylis, W. E. (2007-09-04). "एन-क्विबिट सिस्टम के सुसंगत नियंत्रण के लिए पर्याप्त स्थिति". Physical Review A. American Physical Society (APS). 76 (3): 033401. arXiv:quant-ph/0703220. Bibcode:2007PhRvA..76c3401C. doi:10.1103/physreva.76.033401. ISSN 1050-2947. S2CID 45060566.
- Vaz, Jayme; Mann, Stephen (2018). "पैरावेक्टर और 3डी यूक्लिडियन स्पेस की ज्यामिति". Advances in Applied Clifford Algebras. Springer Science and Business Media LLC. 28 (5): 99. arXiv:1810.09389. doi:10.1007/s00006-018-0916-1. ISSN 0188-7009. S2CID 253600966.