मॉड्यूलेटिंग रेट्रो-रिफ्लेक्टर

From Vigyanwiki
Revision as of 16:56, 5 December 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)

मॉड्यूलेटिंग रेट्रो-रिफ्लेक्टर (एमआरआर) प्रणाली प्रकाशीय संचार[1] और कभी-कभी प्रोग्रामेबल साइनेज जैसे अन्य कार्यों की अनुमति देने के लिए एक प्रकाशीय रेट्रो-रिफ्लेक्टर और एक प्रकाशीय मॉड्यूलेटर को जोड़ती है। [2]

मुक्त अंतरिक्ष प्रकाशीय संचार तकनीक वर्तमान के वर्षों में पारंपरिक रेडियो आवृति (आरएफ) प्रणालियों के एक आकर्षक विकल्प के रूप में उभरी है। यह उद्भव अधिक सीमा तक लेजर और कॉम्पैक्ट प्रकाशीय प्रणाली की बढ़ती परिपक्वता के कारण है जो प्रकाशीय और निकट-अवरक्त वाहकों की बहुत कम तरंग दैर्ध्य विशेषता के अंतर्निहित लाभ (आरएफ पर) का शोषण करने में सक्षम बनाता है:[1]

  • बड़ा बैंडविड्थ
  • अवरोधन की कम संभावना
  • हस्तक्षेप या जाम होने से प्रतिरक्षा
  • आवृति स्पेक्ट्रम आवंटन उद्देश्य से राहत
  • छोटा, हल्का, कम शक्ति वाला

प्रौद्योगिकी

एमआरआर मॉड्यूलेटेड प्रकाशीय संकेत को सीधे प्रकाशीय रिसीवर या ट्रांसीवर पर प्रतिबिंबित करने के लिए मॉड्यूलर के साथ एक प्रकाशीय रेट्रोरेफ्लेक्टर को जोड़ता है या जोड़ता है, जिससे एमआरआर अपनी प्रकाशीय शक्ति उत्सर्जित किए बिना प्रकाशीय संचार उपकरण के रूप में कार्य कर सकता है। यह एमआरआर को पर्याप्त ऑन-बोर्ड विद्युत आपूर्ति की आवश्यकता के बिना लंबी दूरी पर प्रकाशीय संचार करने की अनुमति दे सकता है। रेट्रोरिफ्लेक्शन घटक का कार्य प्रतिबिंब को प्रकाश के स्रोत पर वापस या उसके निकट निर्देशित करना है। मॉड्यूलेशन घटक प्रतिबिंब की तीव्रता को बदल देता है। यह विचार व्यापक अर्थों में प्रकाशीय संचार पर प्रयुक्त होता है जिसमें न केवल लेजर-आधारित डेटा संचार किन्तु मानव पर्यवेक्षक और सड़क संकेत भी सम्मिलित हैं। मॉड्यूलेशन घटक के लिए विभिन्न प्रौद्योगिकियां प्रस्तावित, जांच और विकसित की गई हैं, जिनमें सक्रिय माइक्रोमिरर्स, कुंठित कुल आंतरिक प्रतिबिंब, इलेक्ट्रो-प्रकाशिक मॉड्यूलेटर (ईओएम), पीजो-एक्ट्यूएटेड डिफ्लेक्टर सम्मिलित हैं।[3] क्वांटम अच्छी तरह से (एमक्यूडब्ल्यू) उपकरण ,[4][5] और लिक्विड क्रिस्टल मॉड्यूलेटर है , चूँकि विभिन्न ज्ञात प्रकाशीय मॉड्यूलेशन प्रौद्योगिकियों में से किसी एक का उपयोग सिद्धांत में किया जा सकता है। विद्युत के उपयोग, गति, मॉड्यूलेशन सीमा, कॉम्पैक्टनेस, रेट्रोरफ्लेक्शन डाइवर्जेंस, निवेश और विभिन्न अन्य जैसी सुविधाओं के संबंध में इन दृष्टिकोणों में एक दूसरे के सापेक्ष विभिन्न लाभ और हानि हैं।

एक विशिष्ट प्रकाशीय संचार व्यवस्था में, एमआरआर अपने संबंधित इलेक्ट्रॉनिक्स के साथ एक सुविधाजनक प्लेटफॉर्म पर लगाया जाता है और एक होस्ट कंप्यूटर से जुड़ा होता है जिसमें स्थानांतरित होने वाला डेटा होता है। एक दूर स्थित प्रकाशीय ट्रांसमीटर/रिसीवर प्रणाली जिसमें समान्य रूप से लेजर, टेलीस्कोप और सूचक सम्मिलित होता है, मॉड्यूलेटिंग रेट्रो-रिफ्लेक्टर को एक प्रकाशीय संकेत प्रदान करता है। ट्रांसमीटर प्रणाली से आपतित प्रकाश एमआरआर द्वारा संशोधित होता है और सीधे ट्रांसमीटर की ओर वापस परावर्तित होता है (रेट्रोरिफ्लेक्शन प्रॉपर्टी के माध्यम से)। चित्र 1 इस अवधारणा को दर्शाता है।[1]


प्रौद्योगिकी की प्रकाशीय प्रकृति संचार प्रदान करती है जो विद्युत चुम्बकीय आवृत्ति आवंटन से संबंधित उद्देश्यों के प्रति संवेदनशील नहीं है। एकाधिक क्वांटम वेल मॉड्यूलेटिंग रेट्रो-रिफ्लेक्टर में कॉम्पैक्ट, हल्के होने के अतिरिक्त लाभ हैं और इसके लिए बहुत कम विद्युत की आवश्यकता होती है। जिसकी छोटी-सरणी एमआरआर समतुल्य आरएफ प्रणाली पर व्यय की गई विद्युत बचत में परिमाण के क्रम तक प्रदान करती है।[1] चूँकि , एमक्यूडब्ल्यू मॉड्यूलेटर में अन्य तकनीकों की तुलना में अपेक्षाकृत छोटी मॉड्यूलेशन सीमा होती है।

मॉड्यूलेटिंग रेट्रो-रिफ्लेक्टर की अवधारणा नई नहीं है, यह 1940 के दशक से चली आ रही है। पिछले कुछ वर्षों में ऐसे उपकरणों के विभिन्न प्रदर्शन बनाए गए हैं, चूँकि पहला एमक्यूडब्ल्यू एमआरआर का प्रदर्शन 1993 में हुआ था[6] महत्वपूर्ण डेटा दरें प्राप्त करने में उल्लेखनीय था। चूँकि , एमआरआर का अभी भी व्यापक रूप से उपयोग नहीं किया जाता है, और उस क्षेत्र में अधिकांश अनुसंधान और विकास किन्तु खोजपूर्ण सैन्य अनुप्रयोगों तक ही सीमित है, क्योंकि सामान्य रूप से मुक्त स्थान प्रकाशीय संचार एक विशिष्ट विशिष्ट तकनीक है।

एमआरआर में अधिकांशत: वांछनीय माने जाने वाले गुणों (स्पष्ट रूप से एप्लिकेशन के आधार पर) में उच्च स्विचिंग गति, कम विद्युत की व्यय , बड़ा क्षेत्र, विस्तृत दृश्य क्षेत्र और उच्च प्रकाशीय गुणवत्ता सम्मिलित हैं। इसे कुछ तरंग दैर्ध्य पर भी कार्य करना चाहिए जहां उपयुक्त लेजर स्रोत उपलब्ध हों, विकिरण-सहिष्णु (गैर-स्थलीय अनुप्रयोगों के लिए) होना चाहिए, और शसक्त होना चाहिए। उदाहरण के लिए, मैकेनिकल शटर और फेरोइलेक्ट्रिक लिक्विड क्रिस्टल (एफएलसी) उपकरण बहुत धीमे, भारी हैं, या विभिन्न अनुप्रयोगों के लिए पर्याप्त शसक्त नहीं हैं। कुछ मॉड्यूलेटिंग रेट्रो-रिफ्लेक्टर प्रणाली को मेगाबिट्स प्रति सेकंड (एमबीटी/एस) की डेटा दरों और उच्च और बड़े तापमान सीमा पर संचालित करने की इच्छा होती है जो दरवाजे के बाहर और अंतरिक्ष में स्थापना की विशेषता है।

एकाधिक क्वांटम वेल मॉड्यूलेटर

अर्धचालक एमक्यूडब्ल्यू मॉड्यूलेटर उन कुछ तकनीकों में से एक है जो संयुक्त राज्य नौसेना अनुप्रयोगों के लिए सभी आवश्यकताओं को पूरा करती है, और परिणामस्वरूप नौसेना अनुसंधान प्रयोगशाला उस दृष्टिकोण को विकसित करने और बढ़ावा देने में विशेष रूप से सक्रिय है। जब शटर के रूप में उपयोग किया जाता है, तो एमक्यूडब्ल्यू तकनीक विभिन्न लाभ प्रदान करती है: यह शसक्त ठोस अवस्था है, कम वोल्टेज (20 एमवी से कम) और कम विद्युत (दसियों मिलीवाट) पर काम करती है, और बहुत उच्च स्विचिंग गति में सक्षम है। फाइबर प्रकाशिक अनुप्रयोगों में एमक्यूडब्ल्यू मॉड्यूलेटर को Gbit/s डेटा दरों पर चलाया गया है।[1]

जब एक मध्यम (~15V) वोल्टेज को रिवर्स बायस में शटर के पार रखा जाता है, तो अवशोषण सुविधा बदल जाती है, जो कि लंबी तरंग दैर्ध्य में स्थानांतरित हो जाती है और परिमाण में गिरावट आती है। इस प्रकार, इस अवशोषण सुविधा के पास उपकरण का ट्रांसमिशन नाटकीय रूप से बदलता है, जिससे संकेत को वाहक पूछताछ बीम पर ऑन-ऑफ-कीइंग प्रारूप में एन्कोड किया जा सकता है।[1]

इस मॉड्यूलेटर में AlGaAs बाधाओं से घिरे InGaAs कुओं की 75 अवधियाँ सम्मिलित हैं। उपकरण को एन-टाइप GaAs वेफर पर विकसित किया गया है और इसे p -टाइप संपर्क परत द्वारा कैप किया गया है, इस प्रकार एक पिन डायोड बनता है। यह उपकरण एक ट्रांसमिसिव मॉड्यूलेटर है जिसे 980 एनएम की तरंग दैर्ध्य पर काम करने के लिए डिज़ाइन किया गया है, जो विभिन्न अच्छे लेजर डायोड स्रोतों के साथ संगत है। इन सामग्रियों का परावर्तन आर्किटेक्चर में संचालन में बहुत अच्छा प्रदर्शन है। मॉड्यूलेटर प्रकार और कॉन्फ़िगरेशन आर्किटेक्चर का चुनाव एप्लिकेशन पर निर्भर है।[1]

एक बार बड़े हो जाने पर, वेफर को एचिंग और धातुकरण चरणों से युक्त बहु-चरण फोटोलिथोग्राफी प्रक्रिया का उपयोग करके अलग-अलग उपकरणों में तैयार किया जाता है। एनआरएल प्रायोगिक उपकरणों में 5 मिमी एपर्चर है, चूँकि बड़े उपकरण संभव हैं और इन्हें डिजाइन और विकसित किया जा रहा है। यह बताना महत्वपूर्ण है कि जबकि एमक्यूडब्ल्यू मॉड्यूलेटर का उपयोग आज तक विभिन्न अनुप्रयोगों में किया गया है, इतने बड़े आकार के मॉड्यूलेटर असामान्य हैं और विशेष निर्माण तकनीकों की आवश्यकता होती है।[1]

एमक्यूडब्ल्यू मॉड्यूलर स्वाभाविक रूप से शांत उपकरण हैं, जो प्रयुक्त वोल्टेज को मॉड्यूलेटेड तरंग के रूप में स्पष्ट रूप से पुन: प्रस्तुत करते हैं। एक महत्वपूर्ण पैरामीटर कंट्रास्ट अनुपात है, जिसे Imax/Imin. के रूप में परिभाषित किया गया है। यह पैरामीटर समग्र सिग्नल-टू-ध्वनि अनुपात को प्रभावित करता है। इसका परिमाण उपकरण पर प्रयुक्त ड्राइव वोल्टेज और एक्सिटॉन शिखर के सापेक्ष पूछताछ लेजर की तरंग दैर्ध्य पर निर्भर करता है। संतृप्ति मान तक पहुंचने तक वोल्टेज बढ़ने पर कंट्रास्ट अनुपात बढ़ता है। समान्य रूप से , एनआरएल में निर्मित मॉड्यूलेटर में संरचना के आधार पर 10 वी और 25 वी के बीच प्रयुक्त वोल्टेज के लिए 1.75:1 से 4:1 के बीच कंट्रास्ट अनुपात होता है।[1]

किसी दिए गए उपकरण के निर्माण और निर्माण में तीन महत्वपूर्ण विचार हैं: अंतर्निहित अधिकतम मॉड्यूलेशन दर बनाम एपर्चर आकार; विद्युत ऊर्जा की व्यय बनाम एपर्चर आकार; और प्राप्ति है.[1]

अंतर्निहित अधिकतम मॉड्यूलेशन दर बनाम एपर्चर आकार

मॉड्यूलेटर की स्विचिंग गति में मूलभूत सीमा प्रतिरोध-समाई सीमा है। एक प्रमुख ट्रेडऑफ़ मॉड्यूलेटर का क्षेत्र बनाम स्पष्ट एपर्चर का क्षेत्र है। यदि मॉड्यूलेटर क्षेत्र छोटा है, तो कैपेसिटेंस छोटा है, इसलिए मॉड्यूलेशन दर तेज हो सकती है। चूँकि , विभिन्न सौ मीटर की लंबी अनुप्रयोग सीमा के लिए, लिंक को बंद करने के लिए बड़े एपर्चर की आवश्यकता होती है। किसी दिए गए मॉड्यूलेटर के लिए, शटर की गति मॉड्यूलेटर व्यास के वर्ग के विपरीत होती है।[1]

विद्युत ऊर्जा की व्यय बनाम एपर्चर आकार

जब ड्राइव वोल्टेज तरंग को अनुकूलित किया जाता है, तो एमक्यूडब्ल्यू मॉड्यूलेटिंग रेट्रो-रिफ्लेक्टर की विद्युत ऊर्जा व्यय इस प्रकार भिन्न होती है:

Dmod4 * V2 B2 Rs

जहां डीएमओडी मॉड्यूलेटर का व्यास है, जो कि V मॉड्यूलेटर पर प्रयुक्त वोल्टेज है (आवश्यक प्रकाशीय कंट्रास्ट अनुपात द्वारा तय किया गया है), जो कि B उपकरण की अधिकतम डेटा दर है, और RS उपकरण का शीट प्रतिरोध है। इस प्रकार एमक्यूडब्ल्यू शटर के व्यास को बढ़ाने के लिए एक बड़े विद्युत छतिपूर्ति का भुगतान किया जा सकता है।[1]

प्रतिफल

अच्छा कंट्रास्ट अनुपात प्राप्त करने के लिए एमक्यूडब्ल्यू उपकरणों को उच्च रिवर्स पूर्वाग्रह क्षेत्रों में संचालित किया जाना चाहिए। जिसका पूर्ण क्वांटम वेल पदार्थ में यह कोई समस्या नहीं है, किन्तु अर्धचालक क्रिस्टल में दोष की उपस्थिति के कारण उपकरण संचालन के लिए आवश्यक वोल्टेज से कम वोल्टेज पर टूट सकता है। विशेष रूप से, एक दोष एक विद्युत लघु का कारण बनेगा जो पिन डायोड के आंतरिक क्षेत्र में आवश्यक विद्युत क्षेत्र के विकास को रोकता है। उपकरण जितना बड़ा होगा, ऐसे दोष की संभावना उतनी ही अधिक होगी। इस प्रकार, यदि किसी बड़े अखंड उपकरण के निर्माण में कोई व्यर्थता आती है, तो पूरा शटर नष्ट हो जाता है।[1]

इन उद्देश्यों के समाधान के लिए, एनआरएल ने खंडित उपकरणों के साथ-साथ मोनोलिथिक मॉड्यूलेटर को डिजाइन और निर्मित किया है। अर्थात्, किसी दिए गए मॉड्यूलेटर को विभिन्न खंडों में पिक्सेलित किया जा सकता है, जिसमे प्रत्येक को एक ही संकेत के साथ संचालित किया जा सकता है। इस तकनीक का अर्थ है कि गति के साथ-साथ बड़े एपर्चर भी प्राप्त किए जा सकते हैं। पिक्सेललाइज़ेशन स्वाभाविक रूप से उपकरण के शीट प्रतिरोध को कम करता है, प्रतिरोध-समाई समय को कम करता है और विद्युत ऊर्जा की व्यय को कम करता है। उदाहरण के लिए, एक सेंटीमीटर मोनोलिथिक उपकरण को एक एमबीटी/एस लिंक को समर्थन करने के लिए 400 मेगावाट की आवश्यकता हो सकती है। समान समग्र प्रभावी एपर्चर के साथ समान लिंक का समर्थन करने के लिए एक समान नौ खंड वाले उपकरण को 45 मेगावाट की आवश्यकता होगी। जो 0.5 सेमी के समग्र व्यास के साथ नौ पिक्सेल वाला एक ट्रांसमिसिव उपकरण 10 एमबिट/एस से अधिक का समर्थन करने के लिए दिखाया गया था।[1]

यह निर्माण तकनीक उच्च गति, बड़े एपर्चर और बढ़ी हुई प्राप्ति की अनुमति देती है। यदि एक भी पिक्सेल दोषों के कारण खो गया है, किन्तु नौ या सोलह में से एक है, तो लिंक को बंद करने के लिए अपेक्षित सिग्नल-टू-ध्वनि प्रदान करने के लिए आवश्यक कंट्रास्ट अनुपात अभी भी उच्च है। ऐसे विचार हैं जो खंडित उपकरण के निर्माण को और अधिक सम्मिश्र बनाते हैं, जिसमें उपकरण पर बॉन्ड वायर प्रबंधन, विभिन्न खंडों को चलाना और तापमान स्थिरीकरण सम्मिलित है।[1]

मॉड्यूलेटर की एक अतिरिक्त महत्वपूर्ण विशेषता इसकी प्रकाशीय वेवफ्रंट गुणवत्ता है। यदि मॉड्यूलेटर बीम में विपथन का कारण बनता है, तो लौटाया गया प्रकाशीय संकेत क्षीण हो जाएगा और लिंक को बंद करने के लिए अपर्याप्त प्रकाश उपस्थित हो सकता है।[1]


अनुप्रयोग[1]

  • ज़मीन से हवा में संचार
  • ग्राउंड-टू-सैटेलाइट संचार
  • आंतरिक इलेक्ट्रॉनिक्स बस इंटरेक्शन/संचार
  • इंटर, इंट्रा-ऑफिस संचार
  • वाहन-से-वाहन संचार
  • औद्योगिक उत्पादन

यह भी देखें

संदर्भ

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 "Modulating Retro Reflector for Free Space Optical Data Transfer using Multiple Quantum Well Technology". Archived from the original on 2008-10-26. Retrieved 2008-05-08.
  2. Coope, Robin J. N.; Whitehead, Lorne A.; Kotlicki, Andrzej (2002-09-01). "कुल आंतरिक प्रतिबिंब की नियंत्रित हताशा द्वारा रेट्रोरफ्लेक्शन का मॉड्यूलेशन". Applied Optics. The Optical Society. 41 (25): 5357–5361. Bibcode:2002ApOpt..41.5357C. doi:10.1364/ao.41.005357. ISSN 0003-6935. PMID 12211564.
  3. Rabedeau, M. E. (1969). "स्विचेबल टोटल इंटरनल रिफ्लेक्शन लाइट डिफ्लेक्टर". IBM Journal of Research and Development. IBM. 13 (2): 179–183. doi:10.1147/rd.132.0179. ISSN 0018-8646.
  4. http://www.nrl.navy.mil/fpco/publications/2000United%20States%20Patent_%206,154,299.pdf[dead link]
  5. DRUM: Item 1903/6807[permanent dead link]
  6. Fritz, I. J.; Brennan, T. M.; Hammons, B. E.; Howard, A. J.; Worobey, W.; Vawter, G. A.; Myers, D. R. (1993-07-26). "Low‐voltage vertical‐cavity transmission modulator for 1.06 μm". Applied Physics Letters. AIP Publishing. 63 (4): 494–496. doi:10.1063/1.109983. ISSN 0003-6951.