गेलफैंड-नैमार्क-सेगल निर्माण

From Vigyanwiki
Revision as of 20:20, 4 December 2023 by alpha>Shivendra

फलनिक विश्लेषण में, गणित के भीतर एक अनुशासन, जिसे C*-बीजगणित A दिया जाता है, 'गेलफैंड-नैमार्क-सेगल निर्माण' A के चक्रीय *-निरूपण और A (जिसे अवस्था कहा जाता है) पर कुछ रैखिक फलनक के बीच पत्राचार स्थापित करता है। पत्राचार को अवस्था की ओर से *-निरूपण के स्पष्ट निर्माण द्वारा दिखाया गया है। इसका नाम इज़राइल गेलफैंड, मार्क नमारिक और इरविंग सेगल के नाम पर रखा गया है।

अवस्था और निरूपण

A *- हिल्बर्ट समष्टि H पर C*-बीजगणित A का निरूपण A से H पर परिबद्ध संचालकों के बीजगणित में प्रतिचित्रण (गणित) π है जैसे कि

  • π एक वलय समरूपता है जो A पर अंतर्वलन (गणित) को संचालकों पर अंतर्वलन करता है
  • π गैर-अपक्षयी है, अर्थात सदिशों की समष्टि π(x) ξ सघन है क्योंकि x की श्रेणी A से होती है और ξ की श्रेणी H से होती है। ध्यान दें कि यदि A की तत्समक है, तो नॉनडिजेनरेसी का मतलब है कि π इकाई-संरक्षण है, यानी π A की तत्समक को H पर तत्समक संचालक को मैप करता है।

C*-बीजगणित A पर स्थिति (फलनिक विश्लेषण) मानक 1 का सकारात्मक रैखिक फलनिक एफ है। यदि A में गुणक इकाई तत्व है तो यह स्थिति एफ के बराबर है (1)=1.

हिल्बर्ट स्पेस H पर C*-बीजगणित A के निरूपण π के लिए, तत्व ξ को चक्रीय वेक्टर कहा जाता है यदि वैक्टर का सेट

H में मानक सघनता है, इस स्थिति में π को 'चक्रीय निरूपण' कहा जाता है। अघुलनशील निरूपण का कोई भी गैर-शून्य वेक्टर चक्रीय है। हालाँकि, सामान्य चक्रीय निरूपण में गैर-शून्य वैक्टर चक्रीय होने में विफल हो सकते हैं।

जीएनएस निर्माण

मान लीजिए π हिल्बर्ट स्पेस H पर C*-बीजगणित A का *-निरूपण है और π के लिए इकाई मानक चक्रीय वेक्टर है। तब

A की अवस्था है.

इसके विपरीत, A के प्रत्येक अवस्था को अवस्था (फलनिक विश्लेषण) के रूप में देखा जा सकता है #वेक्टर उपयुक्त विहित निरूपण के तहत ऊपर बताए अनुसार बताता है।

Theorem.[1] — A की स्थिति ρ को देखते हुए, A का एक *-निरूपण π है जो हिल्बर्ट समष्टि H पर विशिष्ट इकाई चक्रीय सदिश ξ के साथ कार्य करता है जैसे कि A में प्रत्येक A के लिए।

Proof
  1. हिल्बर्ट समष्टि का निर्माण H '

    A पर एक अर्ध-निश्चित सेसक्विलिनियर रूप

    को परिभाषित करें।

    कॉची-श्वार्ज़ असमानता द्वारा, पतित अवयव, A' में A संतोषजनक ρ(A* A)= 0, रूप A की एक सदिश उपसमष्टि I बनाते है। C*-बीजगणितीय तर्क द्वारा, कोई यह दिखा सकता है कि I, A का बायाँ आदर्श है (जिसे ρ के बाएँ कर्नेल के रूप में जाना जाता है)। वस्तुतः, यह ρ की शून्य समष्टि में सबसे बड़ा बायां आदर्श है। सदिश उप-समष्टि I द्वारा A की भागफल समष्टि एक आंतरिक गुणनफल समष्टि है जिसका आंतरिक गुणनफल द्वारा परिभाषित है। इस आंतरिक उत्पाद से प्रेरित मानदंड में A/I की कौची समापन एक हिल्बर्ट समष्टि है, जिसे हम H द्वारा निरूपित करते हैं।
  2. निरूपण का निर्माण π
    A/I पर A की क्रिया π को π(a)(b+I) = ab+I द्वारा A/I पर परिभाषित करें। I को बायां आदर्श दिखाने वाला वही तर्क यह भी दर्शाता है कि π(a) A/I पर एक परिबद्ध संचालिका है और इसलिए इसे पूर्णता तक विशिष्ट रूप से बढ़ाया जा सकता है। हिल्बर्ट समष्टि पर एक संक्रियक के संलग्न की परिभाषा को अनावृत करते हुए, π *-संरक्षित हो जाता है। यह *-निरूपण π के अस्तित्व को सिद्ध करता है।
  3. इकाई मानदंड चक्रीय सदिश की पहचान करना

    यदि A की गुणात्मक समरूपता 1 है, तो यह तत्काल है कि जीएनएस हिल्बर्ट समष्टि H में 1 युक्त समतुल्य वर्ग ξ उपरोक्त निरूपण के लिए एक चक्रीय समष्टि है। यदि A गैर-इकाई है, तो A के लिए एक अनुमानित समरूपता {eλ} लें। चूँकि धनात्मक रैखिक कार्यात्मकताएँ परिबद्ध हैं, नेट {eλ} के तुल्यता वर्ग H में कुछ सदिश ξ में परिवर्तित हो जाते हैं, जो π के लिए एक चक्रीय सदिश है।

    जीएनएस हिल्बर्ट समष्टि H पर आंतरिक गुणनफल की परिभाषा से यह स्पष्ट है कि अवस्था ρ को H पर एक सदिश अवस्था के रूप में पुनर्प्राप्त किया जा सकता है। इससे प्रमेय सिद्ध होता है।

उपरोक्त प्रमेय के प्रमाण में A की स्थिति से *-निरूपण उत्पन्न करने के लिए उपयोग की जाने वाली विधि को 'जीएनएस निर्माण' कहा जाता है। C*-बीजगणित A की स्थिति के लिए, संबंधित जीएनएस निरूपण अनिवार्य रूप से स्थिति द्वारा विशिष्ट रूप से निर्धारित किया जाता है, जैसा कि नीचे प्रमेय में देखा गया है।

Theorem.[2] — A की स्थिति ρ को देखते हुए, π, π' को *-हिल्बर्ट रिक्त समष्टि H, H' पर क्रमशः A का निरूपण करें, प्रत्येक इकाई मानक चक्रीय सदिश ξ ∈ H, ξ' ∈ H' के साथ ऐसा हो कि सभी के लिए हो। फिर π, π' एकात्मक रूप से समतुल्य *-निरूपण हैं अर्थात H से H' तक एक एकात्मक संक्रियक U है जैसे कि A में सभी a के लिए π'(a) = Uπ(a)U*। संक्रियक U जो A में सभी a के लिए एकात्मक तुल्यता प्रतिचित्र π(a)ξ से π'(a)ξ' को लागू करता है।

जीएनएस निर्माण का महत्व

जीएनएस निर्माण गेलफैंड-नैमार्क प्रमेय के प्रमाण के केंद्र में है जो C*-बीजगणित को संचालकों के बीजगणित के रूप में दर्शाता है। एC*-बीजगणित में पर्याप्त रूप से कई शुद्ध अवस्थाएं हैं (नीचे देखें) ताकि संबंधित अपरिवर्तनीय जीएनएस अभ्यावेदन का प्रत्यक्ष योग वफादार फनकार हो।

सभी राज्यों के संगत जीएनएस अभ्यावेदन के प्रत्यक्ष योग को A का सार्वभौमिक निरूपण (C*-बीजगणित) कहा जाता है। A के सार्वभौमिक निरूपण में प्रत्येक चक्रीय निरूपण शामिल है। जैसा कि प्रत्येक *-निरूपण चक्रीय अभ्यावेदन का प्रत्यक्ष योग है, यह इस प्रकार है कि A का प्रत्येक *-निरूपण सार्वभौमिक निरूपण की प्रतियों के कुछ योग का प्रत्यक्ष योग है।

यदि Φ C*-बीजगणित A का सार्वभौमिक निरूपण है, तो कमजोर संचालक टोपोलॉजी में Φ() को बंद करने को A का आवरण वॉन न्यूमैन बीजगणित कहा जाता है। इसे डबल डुअल ए** से पहचाना जा सकता है।

इरेड्यूसिबिलिटी

अघुलनशील निरूपण *-निरूपण और राज्यों के उत्तल सेट के चरम बिंदुओं के बीच का संबंध भी महत्वपूर्ण है। H पर निरूपण π अपरिवर्तनीय है यदि और केवल तभी जब H का कोई बंद उप-समष्टि न हो जो H और तुच्छ उप-समष्टि {0} के अलावा सभी संचालकों π (x) के तहत अपरिवर्तनीय हो।

Theorem — एक इकाई अयव के साथ C*-बीजगणित A की अवस्थाओं का समुच्चय दुर्बल-* टोपोलॉजी के अंतर्गत एक संहत उत्तल समुच्चय है। सामान्यतः, (इस बात की परवाह किए बिना कि A में एक इकाई अवयव है या नहीं) मानक ≤ 1 के धनात्मक फलनों का समुच्चय एक संहत उत्तल समुच्चय है।

ये दोनों परिणाम बानाच-अलाओग्लू प्रमेय का तुरंत अनुसरण करते हैं।

इकाई क्रमविनिमेय मामले में, कुछ सघन द्रव्यमान ≤ 1. क्रेइन-मिलमैन प्रमेय से यह निष्कर्ष निकलता है कि चरम अवस्थाएं डायराक बिंदु-द्रव्यमान माप हैं।

दूसरी ओर, C(X) का निरूपण अपरिवर्तनीय है यदि और केवल यदि यह एक-आयामी है। इसलिए, माप μ के अनुरूप C(X) का GNS निरूपण अप्रासंगिक है यदि और केवल यदि μ चरम अवस्था है। यह वास्तव में सामान्यतः C*-बीजगणित के लिए सत्य है।

Theorem — मान लीजिए A एक C*-बीजगणित है। यदि π इकाई मानक चक्रीय सदिश ξ के साथ हिल्बर्ट समष्टि H पर A का *-प्रतिनिधित्व है, तब π अप्रासंगिक है यदि और मात्र यदि संबंधित स्थिति f मानक ≤ 1 के A पर धनात्मक रैखिक फलनक के उत्तल समुच्चय का एक परम बिंदु है।

इस परिणाम को सिद्ध करने के लिए सबसे पहले यह नोट करें कि निरूपण अपरिवर्तनीय है यदि और केवल यदि π(ए) के वे आदान-प्रदान करते हैं , जिसे π(ए)' द्वारा निरूपित किया जाता है, में तत्समक के अदिश गुणक शामिल होते हैं।

ए पर एफ द्वारा प्रभुत्व वाले किसी भी सकारात्मक रैखिक फलनिक जी के रूप का है

कुछ सकारात्मक संचालक टी के लिएgसंचालक क्रम में 0 ≤ T ≤ 1 के साथ π(A)' में। यह रेडॉन-निकोडिम प्रमेय का संस्करण है।

ऐसे g के लिए, कोई f को सकारात्मक रैखिक फलनक के योग के रूप में लिख सकता है: f = g + g' । तो π इकाई रूप से π के उप-निरूपण के बराबर हैg ⊕ पीg' . इससे पता चलता है कि π अपरिवर्तनीय है यदि और केवल यदि ऐसा कोई π हैg इकाई रूप से π के समतुल्य है, अर्थात g, f का अदिश गुणज है, जो प्रमेय को सिद्ध करता है।

चरम अवस्थाओं को आमतौर पर अवस्था (फलनिक विश्लेषण)#शुद्ध अवस्थाएँ कहा जाता है। ध्यान दें कि अवस्था शुद्ध अवस्था है यदि और केवल यदि वह राज्यों के उत्तल सेट में चरम है।

C*-बीजगणित के लिए उपरोक्त प्रमेय अनुमानित तत्समक के साथ B-स्टार बीजगणित|B*-बीजगणित के संदर्भ में अधिक सामान्यतः मान्य हैं।

सामान्यीकरण

पूरी तरह से सकारात्मक मानचित्रों को दर्शाने वाला स्टाइनस्प्रिंग फैक्टराइजेशन प्रमेय जीएनएस निर्माण का महत्वपूर्ण सामान्यीकरण है।

इतिहास

गेलफैंड-नैमार्क प्रमेय पर गेलफैंड और नैमार्क का पेपर प्रकाशित हुआ था[3] सेगल ने इस कार्य में निहित निर्माण को पहचाना और इसे धारदार रूप में प्रस्तुत किया।[4] 1947 के अपने पेपर में सेगल ने दिखाया कि यह किसी भी भौतिक प्रणाली के लिए, जिसे हिल्बर्ट स्पेस पर संचालकों के बीजगणित द्वारा वर्णित किया जा सकता है, C*-बीजगणित के अपरिवर्तनीय अभ्यावेदन पर विचार करने के लिए पर्याप्त है। क्वांटम सिद्धांत में इसका अर्थ यह है कि C*-बीजगणित वेधशालाओं द्वारा उत्पन्न होता है। जैसा कि सेगल ने बताया, यह पहले जॉन वॉन न्यूमैन द्वारा केवल गैर-सापेक्षवादी श्रोडिंगर-हाइजेनबर्ग सिद्धांत के विशिष्ट मामले के लिए दिखाया गया था।[5]

यह भी देखें

संदर्भ

  • William Arveson, An Invitation to C*-Algebra, Springer-Verlag, 1981
  • Kadison, Richard, Fundamentals of the Theory of Operator Algebras, Vol. I : Elementary Theory, American Mathematical Society. ISBN 978-0821808191.
  • Jacques Dixmier, Les C*-algèbres et leurs Représentations, Gauthier-Villars, 1969.
    English translation: Dixmier, Jacques (1982). C*-algebras. North-Holland. ISBN 0-444-86391-5.
  • Thomas Timmermann, An invitation to quantum groups and duality: from Hopf algebras to multiplicative unitaries and beyond, European Mathematical Society, 2008, ISBN 978-3-03719-043-2Appendix 12.1, section: GNS construction (p. 371)
  • Stefan Waldmann: On the representation theory of deformation quantization, In: Deformation Quantization: Proceedings of the Meeting of Theoretical Physicists and Mathematicians, Strasbourg, May 31-June 2, 2001 (Studies in Generative Grammar) , Gruyter, 2002, ISBN 978-3-11-017247-8, p. 107–134 – section 4. The GNS construction (p. 113)
  • G. Giachetta, L. Mangiarotti, G. Sardanashvily (2005). Geometric and Algebraic Topological Methods in Quantum Mechanics. World Scientific. ISBN 981-256-129-3.{{cite book}}: CS1 maint: multiple names: authors list (link)

इनलाइन संदर्भ

  1. Kadison, R. V., Theorem 4.5.2, Fundamentals of the Theory of Operator Algebras, Vol. I : Elementary Theory, American Mathematical Society. ISBN 978-0821808191
  2. Kadison, R. V., Proposition 4.5.3, Fundamentals of the Theory of Operator Algebras, Vol. I : Elementary Theory, American Mathematical Society. ISBN 978-0821808191
  3. I. M. Gelfand, M. A. Naimark (1943). "हिल्बर्ट स्थान पर ऑपरेटरों की रिंग में मानक रिंगों को शामिल करने पर". Matematicheskii Sbornik. 12 (2): 197–217. (also Google Books, see pp. 3–20)
  4. Richard V. Kadison: Notes on the Gelfand–Neimark theorem. In: Robert C. Doran (ed.): C*-Algebras: 1943–1993. A Fifty Year Celebration, AMS special session commemorating the first fifty years of C*-algebra theory, January 13–14, 1993, San Antonio, Texas, American Mathematical Society, pp. 21–54, ISBN 0-8218-5175-6 (available from Google Books, see pp. 21 ff.)
  5. I. E. Segal (1947). "संचालिका बीजगणित का अघुलनशील निरूपण" (PDF). Bull. Am. Math. Soc. 53 (2): 73–88. doi:10.1090/s0002-9904-1947-08742-5.


श्रेणी:फलनिक विश्लेषण श्रेणी:C*-बीजगणित श्रेणी:स्वयंसिद्ध क्वांटम क्षेत्र सिद्धांत

आरयू:बीजगणितीय क्वांटम सिद्धांत