चिरल क्षोभ सिद्धांत
चिरल विक्षोभ सिद्धांत (सीएचपीटी) प्रभावी क्षेत्र सिद्धांत है जो क्वांटम क्रोमोडायनामिक्स (क्यूसीडी) की (अनुमानित) चिरल समरूपता के साथ-साथ समता और आवेश संयुग्मन की अन्य समरूपता के अनुरूप लैग्रेंजियन के साथ निर्मित है।[1] सीएचपीटी (ChPT) एक सिद्धांत है जो किसी को इस अंतर्निहित चिरल समरूपता के आधार पर क्यूसीडी (QCD) की निम्न-ऊर्जा गतिशीलता का अध्ययन करने की अनुमति देता है।
लक्ष्य
मानक मॉडल के प्रबल अन्योन्यक्रिया के सिद्धांत में, हम क्वार्क और ग्लूऑन के बीच की अन्योन्यक्रियाओं का वर्णन करते हैं। प्रबल युग्मन स्थिरांक के चलने के कारण, हम युग्मन स्थिरांक में विक्षोभ सिद्धांत को केवल उच्च ऊर्जाओं पर ही लागू कर सकते हैं। लेकिन क्यूसीडी की निम्न-ऊर्जा व्यवस्था में, स्वतंत्रता की कोटियां अब क्वार्क और ग्लूऑन नहीं हैं, बल्कि हैड्रॉन हैं। यह परिरोधन का परिणाम है। यदि कोई क्यूसीडी विभाजन फलन को "हल" कर सकता है (जैसे कि लैग्रेंजियन में स्वतंत्रता की कोटियाें को हैड्रॉन द्वारा प्रतिस्थापित किया जाता है), तो कोई निम्न-ऊर्जा भौतिकी के बारे में जानकारी प्राप्त कर सकता था। आज तक यह पूरा नहीं किया जा सका है। चूँकि क्यूसीडी निम्न ऊर्जा पर गैर-विक्षोभ करने वाला हो जाता है, इसलिए क्यूसीडी के विभाजन फलन से जानकारी निकालने के लिए परेशान करने वाले तरीकों का उपयोग करना असंभव है।
क्वार्क और ग्लूऑन के बीच की अंतःक्रिया का वर्णन करते हैं। मजबूत युग्मन स्थिरांक के चलने के कारण, हम केवल उच्च ऊर्जा पर युग्मन स्थिरांक में गड़बड़ी सिद्धांत लागू कर सकते हैं। लेकिन क्यूसीडी के निम्न-ऊर्जा शासन में, स्वतंत्रता की डिग्री अब क्वार्क और ग्लूऑन नहीं हैं, बल्कि Hadrons हैं। यह रंग बंधन का परिणाम है. यदि कोई क्यूसीडी विभाजन फ़ंक्शन (क्वांटम फ़ील्ड सिद्धांत) को हल कर सकता है (जैसे कि लैग्रेंजियन में स्वतंत्रता की डिग्री को हैड्रोन द्वारा प्रतिस्थापित किया जाता है), तो कोई कम ऊर्जा भौतिकी के बारे में जानकारी निकाल सकता है। आज तक यह पूरा नहीं हो सका है. चूँकि QCD कम ऊर्जा पर गैर-परेशान करने वाला हो जाता है, इसलिए QCD के विभाजन फ़ंक्शन से जानकारी निकालने के लिए परेशान करने वाले तरीकों का उपयोग करना असंभव है। जाली QCD एक वैकल्पिक विधि है जो गैर-परेशान करने वाली जानकारी निकालने में सफल साबित हुई है।
विधि
स्वतंत्रता की विभिन्न डिग्री का उपयोग करते हुए, हमें यह आश्वस्त करना होगा कि ईएफटी में गणना की गई अवलोकन अंतर्निहित सिद्धांत से संबंधित हैं। यह सबसे सामान्य लैग्रेन्जियन का उपयोग करके प्राप्त किया जाता है जो अंतर्निहित सिद्धांत की समरूपता के अनुरूप है, क्योंकि यह विश्लेषणात्मक कार्य, परेशान इकाईत्व (भौतिकी)भौतिकी), क्लस्टर अपघटन और अनुमानित समरूपता के अनुरूप सबसे सामान्य संभव एस मैट्रिक्स उत्पन्न करता है।[2][3] सामान्य तौर पर ऐसे अनंत संख्या में शब्द हैं जो इस आवश्यकता को पूरा करते हैं। इसलिए कोई भी भौतिक भविष्यवाणी करने के लिए, सिद्धांत को एक शक्ति-आदेश योजना सौंपी जाती है जो कुछ पूर्व-निर्धारित महत्व की डिग्री के अनुसार शब्दों को व्यवस्थित करती है। आदेश किसी को कुछ शर्तें रखने और अन्य सभी, उच्च-क्रम सुधारों को छोड़ने की अनुमति देता है जिन्हें अस्थायी रूप से अनदेखा किया जा सकता है।
सीएचपीटी में कई बिजली गिनती योजनाएं हैं। सबसे व्यापक रूप से उपयोग किया जाने वाला एक है -विस्तार कहां गति के लिए खड़ा है. हालाँकि, वहाँ भी मौजूद हैं , और विस्तार. ये सभी विस्तार सीमित मात्रा में मान्य हैं, (यद्यपि अनंत आयतन में केवल विस्तार ही मान्य है।) सीमित आयतन के विशेष विकल्पों के लिए भौतिकी को सही ढंग से समझने के लिए किरल सिद्धांत के विभिन्न पुनर्गठन का उपयोग करने की आवश्यकता होती है। ये विभिन्न पुनर्गठन विभिन्न शक्ति गणना योजनाओं के अनुरूप हैं।
आदेश देने की योजना के अलावा, अनुमानित लैग्रेंजियन में अधिकांश शब्दों को युग्मन स्थिरांक से गुणा किया जाएगा जो प्रत्येक पद द्वारा दर्शाए गए बल की सापेक्ष शक्तियों का प्रतिनिधित्व करते हैं। इन स्थिरांकों के मान - जिन्हें निम्न-ऊर्जा स्थिरांक या Ls भी कहा जाता है - आमतौर पर ज्ञात नहीं हैं। स्थिरांक को प्रयोगात्मक डेटा के अनुरूप निर्धारित किया जा सकता है या अंतर्निहित सिद्धांत से प्राप्त किया जा सकता है।
मॉडल लैग्रेंजियन
का लैग्रेंजियन -विस्तार का निर्माण उन सभी अंतःक्रियाओं को लिखकर किया जाता है जिन्हें समरूपता द्वारा बाहर नहीं किया जाता है, और फिर उन्हें गति और द्रव्यमान शक्तियों की संख्या के आधार पर क्रमबद्ध किया जाता है।
आदेश इसलिए चुना गया है प्रथम-क्रम सन्निकटन में माना जाता है, जहाँ पिओन क्षेत्र है और पियोन द्रव्यमान, जो अंतर्निहित चिरल समरूपता को स्पष्ट रूप से तोड़ता है (पीसीएसी)।[4][5] जैसे शर्तें अन्य, उच्च क्रम सुधारों का हिस्सा हैं।
प्रत्येक पद में एकल पियोन फ़ील्ड को पियोन फ़ील्ड के सभी संभावित संयोजनों की एक अनंत श्रृंखला के साथ प्रतिस्थापित करके लैग्रेंजियन को संपीड़ित करने की भी प्रथा है। सबसे आम विकल्पों में से एक है
कहाँ इसे पियोन क्षय स्थिरांक कहा जाता है जो 93 MeV है।
सामान्य तौर पर, सामान्यीकरण के विभिन्न विकल्प अस्तित्व में है, इसलिए किसी को वह मान चुनना होगा जो चार्ज किए गए पियोन क्षय दर के अनुरूप है।
पुनर्सामान्यीकरण
सामान्य रूप से प्रभावी सिद्धांत गैर-पुनर्सामान्यीकरण योग्य है, हालांकि सीएचपीटी में एक विशेष शक्ति गणना योजना को देखते हुए, प्रभावी सिद्धांत चिरल विस्तार में एक दिए गए क्रम में पुनर्सामान्यीकरण योग्य है। उदाहरण के लिए, यदि कोई किसी अवलोकनीय की गणना करना चाहता है , तो किसी को उन संपर्क शर्तों की गणना करनी चाहिए जो से आती हैं लैग्रेन्जियन (यह एसयू (2) बनाम एसयू (3) सिद्धांत के लिए अलग है) वृक्ष-स्तर पर और एक-लूप योगदान से लैग्रेंजियन।)
कोई भी आसानी से देख सकता है कि इसमें से एक-पाश का योगदान है लैग्रेन्जियन के रूप में गिना जाता है यह ध्यान में रखते हुए कि एकीकरण उपाय के रूप में गिना जाता है , प्रचारक के रूप में गिना जाता है , जबकि व्युत्पन्न योगदान के रूप में गिना जाता है . इसलिए, चूंकि गणना मान्य है , कोई निम्न-ऊर्जा स्थिरांक (एलईसी) के पुनर्सामान्यीकरण के साथ गणना में विचलन को हटा देता है लैग्रेंजियन। इसलिए यदि कोई किसी दिए गए अवलोकन की गणना में सभी भिन्नताओं को दूर करना चाहता है , कोई अभिव्यक्ति में युग्मन स्थिरांक का उपयोग करता है उन मतभेदों को दूर करने के लिए लैग्रेंजियन।
सफल आवेदन
मेसॉन और न्यूक्लियॉन
सिद्धांत पियोन के बीच और पियोन और न्यूक्लियॉन (या अन्य पदार्थ क्षेत्रों) के बीच बातचीत के विवरण की अनुमति देता है। एसयू(3) सीएचपीटी खाओ और ईटा मेसॉन की परस्पर क्रिया का भी वर्णन कर सकता है, जबकि इसी तरह के सिद्धांतों का उपयोग वेक्टर मेसॉन का वर्णन करने के लिए किया जा सकता है। चूँकि चिरल गड़बड़ी सिद्धांत चिरल समरूपता और इसलिए द्रव्यमान रहित क्वार्क मानता है, इसका उपयोग भारी क्वार्कों की परस्पर क्रिया को मॉडल करने के लिए नहीं किया जा सकता है।
एसयू(2) सिद्धांत के लिए अग्रणी ऑर्डर चिरल मॉडल दिया गया है[1]: कहाँ मेव और क्वार्क मास मैट्रिक्स है. में -सीएचपीटी का विस्तार, छोटे विस्तार पैरामीटर हैं
कहाँ क्रम 1 GeV का चिरल समरूपता तोड़ने वाला पैमाना है (कभी-कभी इसका अनुमान लगाया जाता है ). इस विस्तार में, के रूप में गिना जाता है क्योंकि चिरल विस्तार में अग्रणी क्रम के लिए।[6]
हैड्रॉन-हैड्रॉन इंटरैक्शन
कुछ मामलों में, चिरल गड़बड़ी सिद्धांत मजबूत इंटरैक्शन के गैर perturbative शासन में हैड्रॉन के बीच बातचीत का वर्णन करने में सफल रहा है। उदाहरण के लिए, इसे कुछ-न्यूक्लियॉन प्रणालियों पर लागू किया जा सकता है, और गड़बड़ी सिद्धांत में अगले-से-अग्रणी क्रम में, यह प्राकृतिक तरीके से तीन-न्यूक्लियॉन बलों के लिए जिम्मेदार हो सकता है।[7]
संदर्भ
- ↑ 1.0 1.1 Heinrich Leutwyler (2012), Chiral perturbation theory, Scholarpedia, 7(10):8708. doi:10.4249/scholarpedia.8708
- ↑ Weinberg, Steven (1979-04-01). "फेनोमेनोलॉजिकल लैग्रेन्जियंस". Physica A: Statistical Mechanics and Its Applications (in English). 96 (1): 327–340. Bibcode:1979PhyA...96..327W. doi:10.1016/0378-4371(79)90223-1. ISSN 0378-4371.
- ↑ Scherer, Stefan; Schindler, Matthias R. (2012). चिरल गड़बड़ी सिद्धांत के लिए एक प्राइमर. Lecture Notes in Physics (in English). Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-19253-1.
- ↑ Gell-Mann, M., Lévy, M., The axial vector current in beta decay, Nuovo Cim **16**, 705–726 (1960). doi:10.1007/BF02859738
- ↑ J Donoghue, E Golowich and B Holstein, Dynamics of the Standard Model, (Cambridge University Press, 1994) ISBN 9780521476522.
- ↑ Gell-Mann, M.; Oakes, R.; Renner, B. (1968). "Behavior of Current Divergences under SU_{3}×SU_{3}" (PDF). Physical Review. 175 (5): 2195. Bibcode:1968PhRv..175.2195G. doi:10.1103/PhysRev.175.2195.
- ↑ Machleidt, R.; Entem, D.R. (2011). "Chiral effective field theory and nuclear forces". Physics Reports. 503 (1): 1–75. arXiv:1105.2919. Bibcode:2011PhR...503....1M. doi:10.1016/j.physrep.2011.02.001. S2CID 118434586.
बाहरी संबंध
- Howard Georgi, Weak Interactions and Modern Particle Theory, Benjamin Cummings, 1984; revised version 2008
- H Leutwyler, On the foundations of chiral perturbation theory, Annals of Physics, 235, 1994, p 165-203.
- Stefan Scherer, Introduction to Chiral Perturbation Theory, Adv. Nucl. Phys. 27 (2003) 277.
- Gerhard Ecker, Chiral perturbation theory, Prog. Part. Nucl. Phys. 35 (1995), pp. 1–80.