चतुर्विम यूक्लिडीन समष्टि में घूर्णन

From Vigyanwiki
Revision as of 11:51, 11 January 2023 by alpha>Jyotimehta (TEXT)

गणित में, चार-आयामी यूक्लिडीय स्थल में एक निश्चित बिंदु के चारों ओर घूर्णन के समूह (गणित) को SO(4) द्वारा निरूपित किया जाता है। नाम इस तथ्य से आता है कि यह क्रम 4 का विशेष आयतीय समूह है।

इस लेख में घूर्णन (गणित) का अर्थ है घूर्णी विस्थापन। विशिष्टता के लिए, घूर्णन कोणों को खंड [0, π] में माना जाता है सिवाय जहां उल्लेख किया गया हो या अन्यथा संदर्भ द्वारा स्पष्ट रूप से निहित हो।

स्थिर तल वह तल होता है जिसके लिए तल का प्रत्येक सदिश घूर्णन के बाद अपरिवर्तित रहता है। एक अपरिवर्तनीय तल एक तल है जिसके लिए तल में प्रत्येक सदिश घूर्णन के बाद तल में रहता है, हालांकि यह घूर्णन से प्रभावित हो सकता है।

4D घुमावों की ज्यामिति

चार आयामी घुमाव दो प्रकार के होते हैं: साधारण घुमाव और दोहरा घुमाव।

साधारण घुमाव

एक घूर्णन केंद्र O के चारों ओर एक साधारण घुमाव R एक पूरे तल A को O (अक्ष-तल) के माध्यम से तय करता है। प्रत्येक तल B जो पूरी तरह से आयतीय है [a] A को एक निश्चित बिंदु P पर काटता है। ऐसा प्रत्येक बिंदु P, B में R द्वारा प्रेरित 2D घुमाव का केंद्र है। इन सभी 2D घुमावों का घूर्णन कोण α समान है।

अक्ष-तल A में O से अर्ध-रेखाएँ विस्थापित नहीं होती हैं; O आयतीय से A तक की आधी-रेखाएँ α के माध्यम से विस्थापित होती हैं; अन्य सभी अर्ध-रेखाएँ α से कम कोण के माध्यम से विस्थापित होती हैं.

युग्म घूर्णन

Tesseract , त्रिविम प्रक्षेपण में, युग्म घूर्णन में

प्रत्येक घूर्णन के लिए R 4-स्थल (उत्पत्ति को ठीक करना) में, अचर 2-त्रिविम की कम से कम एक जोड़ी है A और B जिनमें से प्रत्येक अपरिवर्तनीय है और जिसका प्रत्यक्ष योग AB सभी 4-स्थलीय है। अतः इनमें से किसी भी तल R पर काम करने से उस तल का एक सामान्य घुमाव पैदा होता है। लगभग सभी R (3-आयामी सबसेट को छोड़कर घूर्णन के सभी 6-आयामी सम्मुच्चय) के लिए, घूर्णन कोण α तल में A और β तल में B - दोनों को अशून्य माना जाता है - अलग हैं। असमान घूर्णन कोण α और β संतुष्टि देने वाला −π < α, β < π लगभग [lower-alpha 1] R के द्वारा विशिष्ट रूप से निर्धारित किया गया है। यह मानते हुए कि 4-स्थल उन्मुख है, फिर 2-तलों A और B का झुकाव इस अभिविन्यास के अनुरूप दो तरह से चुना जा सकता है। यदि घूर्णन कोण असमान (αβ) हैं, R कभी-कभी युग्म घूर्णन कहा जाता है।

युग्म घूर्णन की उस स्थिति में, A और B अपरिवर्तनीय तलों की एकमात्र जोड़ी है, और मूल से आधी-रेखाएँ α और β क्रमशः हैं A, B माध्यम से विस्थापित होते हैं , और मूल से आधी-रेखाएँ जो A या B में नहीं हैं, उन्हें α और β के बीच के कोणों से विस्थापित किया जाता है.

समनमनी घुमाव

यदि एक दोहरे घुमाव के घूर्णन कोण बराबर हैं, तो केवल दो के स्थान पर असीम रूप से कई अपरिवर्तनीय (गणित) तल हैं, और सभी अर्ध-रेखाएँ O उसी कोण से विस्थापित होते हैं। इस तरह के घुमावों को समनमनी या समकोणीय घुमाव या क्लिफर्ड विस्थापन कहा जाता है। सावधान रहें कि सभी तलों के माध्यम से नहीं O समनमनी घुमावों के तहत अपरिवर्तनीय हैं; केवल वे समतल जो एक अर्ध-रेखा द्वारा फैलाए जाते हैं और संबंधित विस्थापित अर्ध-रेखा अपरिवर्तनीय होते हैं।[1]

इसे देखने के लिए, एक समनमनी घूर्णन आर पर विचार करें, और OU, OX, OY, OZ पर पारस्परिक रूप से लंबवत अर्ध-रेखाओं के एक अभिविन्यास-संगत आदेशित सम्मुच्चय लें (OUXYZ के रूप में चिह्नित) जैसे कि OU और OX एक अपरिवर्तनीय तल फैलाते हैं, और इसलिए OA और OZ भी एक अपरिवर्तनीय तल का विस्तार करते हैं। अब मान लें कि केवल घूर्णन कोण α निर्दिष्ट है। फिर OUX और OYZ में घूर्णन इंद्रियों के आधार पर घूर्णन कोण α के साथ विमानों OUX और OYZ में सामान्य रूप से चार समनमनी घुमाव होते हैं।.

हम करार बनाते हैं कि OU से OX तक और OY से OZ तक घूर्णन इंद्रिय को सकारात्मक माना जाता है। फिर हमारे पास चार घुमाव R1 = (+α, +α), R2 = (−α, −α), R3 = (+α, −α) और R4 = (−α, +α) हैं। R1 और R2 एक दूसरे के व्युत्क्रम हैं; इसी प्रकार R3 और R4 एक दूसरे के व्युत्क्रम हैं। जब तक α 0 और π के बीच होता है, तब तक ये चार घुमाव अलग-अलग होंगे।

समान चिह्नों वाले समनतिक घुमावों को बाएँ-समनत वक्र के रूप में निरूपित किया जाता है; जिनके विपरीत चिन्ह यथार्थ-समनमनी हैं। बाएँ- और दाएँ-समनमनी घुमावों को क्रमशः बाएँ और दाएँ-गुणन द्वारा इकाई चतुष्कोणों द्वारा दर्शाया जाता है; नीचे चतुष्कोणों से संबंधित अनुच्छेद देखें।

सिवाय इसके कि चार घुमाव जोड़ीदार अलग-अलग हैं α = 0 या α = π. कोण α = 0 अस्मिता घूर्णन से मेल खाती है; α = π अस्मिता आव्यूह के ऋणात्मक द्वारा दिए गए एक बिंदु में व्युत्क्रम से मेल खाती है। SO(4) के ये दो तत्व ही ऐसे हैं जो एक साथ बाएं और दाएं-समनमनी हैं।

उपरोक्त के रूप में परिभाषित बाएं और दाएं-समनमनी इस बात पर निर्भर करता है कि किस विशिष्ट समनमनी घूर्णन का चयन किया गया था। हालांकि, जब अन्य समनमनी घूर्णन R' अपने स्वयं के अक्षों OU', OX', OY', OZ' के साथ चुना जाता है, तो कोई हमेशा U', X', Y', Z' का क्रम चुन सकता है जैसे एक घूर्णन-परावर्तन के स्थान पर एक घूर्णन द्वारा OU′X′Y′Z′ में परिवर्तित OUXYZ हो सकता है (अर्थात, आदेशित आधार OU′, OX′, OY′, OZ′ भी अभिविन्यास के समान निश्चित विकल्प के अनुरूप है O, X, OY, OZ के रूप में)। इसलिए, एक बार एक अभिविन्यास (अर्थात, अक्षों की एक प्रणाली OUXYZ जिसे सार्वभौमिक रूप से दाएं हाथ के रूप में चिह्नित किया जाता है) का चयन किया जाता है, एक विशिष्ट समनमनी घूर्णन के बाएं या दाएं चरित्र को निर्धारित कर सकता है।

SO(4) की समूह संरचना

SO (4) एक गैर-अनुक्रमणीय संक्षिप्त 6-आयामी लाई समूह है।

घूर्णन केंद्र के माध्यम से प्रत्येक तल O SO(2) के क्रम विनिमेयउपसमूह समरूपी का अक्ष-तल है। ये सभी उपसमूह SO(4) में परस्पर संयुग्मित हैं।

पूरी तरह से आयतीयिटी तलों की प्रत्येक जोड़ी के माध्यम से O SO (4) समरूपी के एक क्रम विनिमय उपसमूह के अपरिवर्तनीय (गणित) तलों की जोड़ी SO(2) × SO(2) है।

ये समूह SO(4) के अधिकतम स्थूलक हैं, जो सभी SO(4) में परस्पर संयुग्मी हैं। क्लिफोर्ड स्थूलक भी देखें।

सभी बाएं-समनमनीक घुमाव SO(4) का एक गैर-अनुवर्ती उपसमूह S3L बनाते हैं, जो गुणक समूह S3 के लिए तुल्याकारी चतुष्कोणों की इकाई है। इसी तरह सभी समकोणीय घूर्णन एक उपसमूह S3R बनाते हैं, दोनों S3L और S3R SO(4) के अधिकतम उपसमूह हैं।

प्रत्येक बाएँ-समनतिक घुमाव क्रमविनिमेय प्रत्येक दाएँ-समनतिक घूर्णन के साथ होता है। इसका तात्पर्य है किसमूहों का प्रत्यक्ष उत्पाद S3L × S3R मौजूद है सामान्य उपसमूहों S3L और S3R के साथ; दोनों संबंधित कारक समूह प्रत्यक्ष उत्पाद के अन्य कारक के लिए समरूपी हैं, यानी समरूपी टू S3. (यह SO(4) या इसका उपसमूह नहीं है, क्योंकि S3L और S3R असंबद्ध नहीं हैं: पहचान I और केंद्रीय उलटा I प्रत्येक दोनों S3L और S3R का है।)

प्रत्येक 4D घूर्णन A दो प्रकार से बाएँ और दाएँ समनतिक घुमावों का गुणनफल AL और AR है AL और AR एक साथ केंद्रीय व्युत्क्रम तक निर्धारित होते हैं, अर्थात जब दोनों AL और AR उनके उत्पाद के केंद्रीय व्युत्क्रम से A गुणा किया जाता है फिर।

इसका तात्पर्य है कि S3L × S3R SO(4) का सार्वभौमिक आवरण समूह है - इसका अद्वितीय दोहरा आवरण - और यह कि S3L और S3R SO(4) के सामान्य उपसमूह हैं। सर्वसमिका घूर्णन I और केंद्रीय व्युत्क्रम -I क्रम 2 का एक समूह C2 बनाता है, जो SO(4) और S3L और S3R दोनों का केंद्र है। किसी समूह का केंद्र उस समूह का एक सामान्य उपसमूह होता है। SO(4) में C2 का कारक समूह SO(3) × SO(3) के लिए तुल्याकारी है। S3L बटा C2 और S3R बटा C2 के कारक समूह प्रत्येक SO(3) के समरूपी हैं। इसी तरह, S3L द्वारा SO(4) और S3R द्वारा SO(4) के कारक समूह SO(3) के लिए प्रत्येक समरूपी हैं।

SO(4) की सांस्थिति वही है जो लाइ समूह की है SO(3) × Spin(3) = SO(3) × SU(2), अर्थात् स्थल जहाँ आयाम 3 और का वास्तविक प्रक्षेप्य स्थान 3-क्षेत्र है। हालांकि, यह उल्लेखनीय है कि, एक लाइ समूह के रूप में, SO(4) लाइ समूहों का प्रत्यक्ष उत्पाद नहीं है, और इसलिए यह समरूप SO(3) × Spin(3) = SO(3) × SU(2) नहीं है।

सामान्य रूप से घूर्णन समूहों के बीच SO(4) की विशेष संपत्ति

विषम-आयामी घूर्णन समूहों में केंद्रीय उलटा नहीं होता है और सरल समूह होते हैं।

सम-आयामी घूर्णन समूहों में केंद्रीय उलटा होता है I और समूह है C2 = {I, I} एक समूह के उनके केंद्र के रूप में। यहां तक ​​कि n ≥ 6 के लिए, SO(n) लगभग सरल है क्योंकि कारक समूह SO(n)/C2 इसके केंद्र द्वारा SO(n) का एक साधारण समूह है।

SO(4) अलग है: SO(4) के किसी भी तत्व द्वारा यूक्लिडीय स्थल में आइसोमेट्री का कोई संयुग्मन नहीं है जो बाएं और दाएं-समनमनी घुमाव को एक दूसरे में बदल देता है। परावर्तन (गणित) संयुग्मन द्वारा एक बाएं-समनमनी घुमाव को दाएं-समनमनी में बदल देता है, और इसके विपरीत। इसका तात्पर्य है कि निश्चित बिंदु वाले सभी आइसोमेट्री के समूह ओ (4) के तहत O अलग उपसमूह S3L और S3R एक दूसरे के संयुग्मी हैं, और इसलिए O(4) के सामान्य उपसमूह नहीं हो सकते। 5D घूर्णन समूह SO(5) और सभी उच्च घूर्णन समूहों में उपसमूह आइसोमॉर्फिक से O(4) होते हैं। SO(4) की तरह, सभी समान-आयामी घूर्णन समूहों में समनमनी घूर्णन होते हैं। लेकिन SO(4) के विपरीत, SO(6) और सभी उच्च सम-आयामी घूर्णन समूहों में एक ही कोण के माध्यम से किसी भी दो समनमनी घूर्णन संयुग्मित होते हैं। सभी समनमनी घुमावों का सम्मुच्चय SO (2) का एक उपसमूह N भी नहीं है), अकेले एक सामान्य उपसमूह दें।

4D घुमावों का बीजगणित

SO(4) को सामान्यतः अभिविन्यास (सदिश स्थान) के समूह के साथ पहचाना जाता है - वास्तविक संख्याओं पर आंतरिक उत्पाद के साथ 4 D सदिश स्थल के समदूरीकता रैखिक प्रतिचित्रण को संरक्षित करता है।

ऐसी जगह SO(4) में प्रसामान्य लांबिक आधार (रैखिक बीजगणित) के संबंध में निर्धारक +1 के साथ वास्तविक 4-क्रम आयतीय आव्यूह के समूह के रूप में दर्शाया गया है।[2]


समनमनी अपघटन

इसके आव्यूह द्वारा दिया गया एक 4D घूर्णन एक बाएं-समनमनी और एक दाएँ-समनमनी घूर्णन में विघटित होता है[3] निम्नलिखित नुसार:

मान लीजिये

यादृच्छिक ढंग से प्रसामान्य लांबिक आधार के संबंध में इसका आव्यूह बनते हैं।

इससे तथाकथित सहयोगी आव्यूह की गणना करें

M श्रेणी (रैखिक बीजगणित) एक है और ईकाई यूक्लिडीय मानदंड का 16 D सदिश के रूप में है यदि और केवल यदि A वास्तव में एक 4D घूर्णन आव्यूह है। इस स्तिथि में वास्तविक संख्याएं a, b, c, d और p, q, r, s मौजूद हैं। ऐसे है कि

और

a, b, c, d और p, q, r, s के ठीक दो सम्मुच्चय ऐसे हैं कि a2 + b2 + c2 + d2 = 1 और p2 + q2 + r2 + s2 = 1। वे एक दूसरे के विपरीत हैं।

घूर्णन आव्यूह तब बराबर होता है

यह सूत्र वान एल्फ्रिनखोफ (1897) के कारण है।

इस अपघटन में पहला कारक बाएं-समनमनी घूर्णन का प्रतिनिधित्व करता है, दूसरा कारक दाएं-समनमनी घूर्णन का प्रतिनिधित्व करता है। कारकों को नकारात्मक चौथे क्रम की पहचान आव्यूह, यानी केंद्रीय व्युत्क्रमण तक निर्धारित किया जाता है।

चतुष्कोणों से संबंध

कार्तीय निर्देशांक (u, x, y, z) के साथ 4-आयामी स्थल में एक बिंदु चतुर्भुज P = u + xi + yj + zk द्वारा दर्शाया जा सकता है।

एक बाएं-समनमनीिक घुमाव को एक इकाई चतुष्कोण QL = a + bi + cj + dk द्वारा बाएं-गुणन द्वारा दर्शाया जाता है। आव्यूह-सदिश भाषा में निम्न है

इसी तरह, एक दाएँ-समनमनी घूर्णन को ईकाई क्वाटरनियन द्वारा दाएँ-गुणन QR = p + qi + rj + sk द्वारा दर्शाया जाता है, जो आव्यूह-सदिश रूप में निम्न है

पिछले अनुभाग में यह दिखाया गया है कि कैसे एक सामान्य 4D घूर्णन बाएं और दाएं-समनमनी कारकों में विभाजित होता है।

चतुष्क भाषा में वैन एल्फ्रिनखोफ का सूत्र पढ़ता है कि

या, प्रतीकात्मक रूप में,

जर्मन गणितज्ञ फेलिक्स क्लेन के अनुसार यह सूत्र 1854 में केली को पहले से ही ज्ञात था[citation needed].

चतुष्क गुणन साहचर्य है। इसलिए,

जो दर्शाता है कि बाएँ-समनतिक और दाएँ-समनतिक घुमाव चलते हैं।

4D घूर्णन मेट्रिसेस के आइगेनवैल्यू

एक 4D घूर्णन आव्यूह के चार आइगेनवैल्यू ​​सामान्यतः ईकाई परिमाण के जटिल संख्याओं के दो संयुग्म जोड़े के रूप में होते हैं। यदि एक ईगेनवेल्यू वास्तविक है, तो यह ±1 होना चाहिए, क्योंकि घूर्णन एक सदिश के परिमाण को अपरिवर्तित छोड़ देता है। उस आइगेनवैल्यू का संयुग्म भी एकता है, जो आइगेन्वेक्टर्स की एक जोड़ी प्रदान करता है जो एक निश्चित तल को परिभाषित करता है, और इसलिए घूर्णन सरल है। क्वाटरनियन संकेतन में, SO(4) में एक उचित (यानी, गैर-प्रतिलोम) घूर्णन एक उचित सरल घूर्णन है यदि और केवल यदि ईकाई क्वाटरनियंस के यथार्थ हिस्से QL और QR परिमाण में समान हैं और समान चिन्ह हैं।[lower-alpha 2] यदि वे दोनों शून्य हैं, तो घूर्णन के सभी आइगेनवैल्यू ​​​​एकांक हैं, और घूर्णन अशक्त घुमाव है। यदि के असली हिस्से QL और QR समान नहीं हैं तो सभी ईगेनवेल्यूज जटिल हैं, और घूर्णन एक दोहरा घूर्णन है।

3D घूर्णन के लिए यूलर-रोड्रिग्स सूत्र

हमारे साधारण 3D स्थल को समन्वय प्रणाली UXYZ के साथ 4D स्थल के समन्वय प्रणाली 0XYZ के साथ आसानी से उप-स्थान के रूप में माना जाता है। इसके घूर्णन समूह SO(3) की पहचान SO(4) के उपसमूह से की जाती है जिसमें आव्यूह होते हैं

पूर्ववर्ती उपखंड में वान एल्फ्रिन्खोफ के सूत्र में तीन आयामों p = a, q = −b, r = −c, s = −d के लिए, या चतुष्कोणीय प्रतिनिधित्व QR = QL′ = QL−1में यह प्रतिबंध होता है।

3D घूर्णन आव्यूह तब 3D घूर्णन के लिए यूलर-रॉड्रिक्स सूत्र बन जाता है

जो इसके यूलर-रोड्रिग्स मापदण्ड द्वारा 3D घूर्णन a, b, c, d का प्रतिनिधित्व है।

इसी चतुर्धातुक सूत्र P′ = QPQ−1, जहाँ Q = QL, या, विस्तारित रूप में:

विलियम रोवन हैमिल्टन -आर्थर केली सूत्र के रूप में जाना जाता है।

हॉपफ निर्देशांक

अतिगोलाकार निर्देशांक के उपयोग से 3D स्थल में घूर्णन को गणितीय रूप से अधिक सुगम बनाया जाता है। 3D में किसी भी घुमाव को घूर्णन के एक निश्चित अक्ष और उस अक्ष के लम्बवत् एक अपरिवर्तनीय तल द्वारा अभिलक्षित किया जा सकता है। व्यापकता के नुकसान के बिना, हम X-तल को निश्चर तल और z-अक्ष को निर्धारित अक्ष के रूप में ले सकते हैं। चूंकि त्रिज्यीय दूरियां घूर्णन से प्रभावित नहीं होती हैं, हम निश्चित अक्ष और अपरिवर्तनीय तल को संदर्भित गोलाकार निर्देशांक द्वारा इकाई क्षेत्र (2-गोले) पर इसके प्रभाव से एक घूर्णन को चिह्नित कर सकते हैं:

चूंकि x2 + y2 + z2 = 1, बिंदु 2-गोले पर स्थित हैं। z-अक्ष के बारे में कोण φ द्वारा घुमाए गए {θ0, φ0} पर एक बिंदु को केवल {θ0, φ0 + φ} द्वारा निर्दिष्ट किया जाता है। जबकि अतिगोलाकार निर्देशांक 4D घुमावों से निपटने में भी उपयोगी होते हैं, 4D के लिए और भी अधिक उपयोगी समन्वय प्रणाली हॉफ निर्देशांक {ξ1, η, ξ2}, [5] द्वारा प्रदान की जाती है, जो 3 पर एक स्थिति निर्दिष्ट करने वाले तीन कोणीय निर्देशांक का एक सम्मुच्चय है। उदाहरण के लिए:

चूंकि u2 + x2 + y2 + z2 = 1, बिंदु 3-गोले पर स्थित हैं।

4D स्थल में, उत्पत्ति के बारे में प्रत्येक घुमाव में दो अपरिवर्तनीय तल होते हैं जो एक दूसरे के लिए पूरी तरह से आयतीय होते हैं और मूल पर प्रतिच्छेद करते हैं, और दो स्वतंत्र कोणों ξ1 और ξ2 द्वारा घुमाए जाते हैं। व्यापकता के नुकसान के बिना, हम क्रमशः uz- और xy-तल इन अपरिवर्तनीय तलों के रूप में चुन सकते हैं। एक बिंदु के 4D में घूर्णन {ξ10, η0, ξ20} कोणों ξ1 और ξ2 के माध्यम से बस हॉफ निर्देशांक {ξ10 + ξ1, η0, ξ20 + ξ2} में व्यक्त किया जाता है।

4D घुमावों का दृश्य

क्लिफर्ड स्थूलक पर एक बिंदु के प्रक्षेपवक्र:
चित्र 1: सरल घुमाव (काला) और बाएँ और दाएँ समनमनी घुमाव (लाल और नीला)
चित्र 2: 1:5 के अनुपात में कोणीय विस्थापन के साथ एक सामान्य घुमाव
चित्र 3: 5:1 के अनुपात में कोणीय विस्थापन के साथ एक सामान्य घुमाव
सभी छवियां त्रिविम अनुमान हैं।

3D स्थल में हर घुमाव में घूर्णन द्वारा अपरिवर्तित एक निश्चित अक्ष होता है। घूर्णन की धुरी और उस अक्ष में घूर्णन के कोण को निर्दिष्ट करके घूर्णन पूरी तरह से निर्दिष्ट किया गया है। व्यापकता के नुकसान के बिना, इस अक्ष को कार्तीय समन्वय प्रणाली के z-अक्ष के रूप में चुना जा सकता है, जिससे घूर्णन के सरल दृश्य की अनुमति मिलती है।।

3D स्थल में, गोलाकार निर्देशांक {θ, φ} 2-क्षेत्र की प्राचलिक अभिव्यक्ति के रूप में देखा जा सकता है। निश्चित के लिए θ वे 2-गोले पर मंडलियों का वर्णन करते हैं जो लंबवत हैं। z-अक्ष और इन वृत्तों को गोले पर एक बिंदु के प्रक्षेपवक्र के रूप में देखा जा सकता है। एक बिंदु {θ0, φ0} गोले पर, चारों ओर एक घूर्णन के तहत z-अक्ष, एक प्रक्षेपवक्र का अनुसरण करेगा कोण {θ0, φ0 + φ} के रूप में φ भिन्न होता है। प्रक्षेपवक्र को समय में घूर्णन प्राचलिक के रूप में देखा जा सकता है, जहां घूर्णन का कोण समय में रैखिक है: φ = ωt, ω के साथ "कोणीय वेग"।

3D स्तिथि के अनुरूप, 4D स्थल में प्रत्येक घूर्णन में कम से कम दो अपरिवर्तनीय धुरी-तल होते हैं जो घूर्णन द्वारा अपरिवर्तित छोड़ दिए जाते हैं और पूरी तरह से आयतीय होते हैं (यानी वे एक बिंदु पर छेड़छाड़ करते हैं)। घूर्णन पूरी तरह से धुरी तलों और उनके चारों ओर घूर्णन के कोणों को निर्दिष्ट करके निर्दिष्ट किया गया है। व्यापकता के नुकसान के बिना, इन धुरी तलों को चुना जा सकता है uz- और xy-एक कार्तीय समन्वय प्रणाली के तल, घूर्णन के एक सरल दृश्य की अनुमति देते हैं।

4D स्थल में, हॉफ कोण {ξ1, η, ξ2} 3-गोले को मानकीकरण करें। निश्चितη के लिए वे परिचालित एक स्थूलक ξ1 और ξ2 के साथ η = π/4 का वर्णन करते हैं, साथ xy- और uz-तलों में क्लिफर्ड टोरस की विशेष स्तिथि है। ये तोरी 3D-स्थल में पाई जाने वाली सामान्य तोरी नहीं हैं। जबकि वे अभी भी 2D सतह हैं, वे 3-गोले में सन्निहित हैं। 3-गोले को पूरे यूक्लिडीय 3डी-स्थल पर प्रक्षेपित त्रिविम प्रक्षेपण हो सकता है, और इन तोरी को फिर क्रांति की सामान्य टोरी के रूप में देखा जाता है। यह देखा जा सकता है कि एक बिंदु द्वारा निर्दिष्ट {ξ10, η0, ξ20} के साथ परिक्रमा कर रहा है uz- और xy-त्रिविम अचर द्वारा निर्दिष्ट स्थूलक पर रहेगा η0.[4] एक बिंदु के प्रक्षेपवक्र को समय के कार्य के रूप में लिखा जा सकता है {ξ10 + ω1t, η0, ξ20 + ω2t} और इसके संबंधित स्थूलक पर त्रिविम रूप से प्रक्षेपित किया गया है, जैसा कि नीचे दिए गए आंकड़ों में है।[5] इन आंकड़ों में, प्रारंभिक बिंदु {0, π/4, 0} क्लिफर्ड स्थूलक पर लिया जाता है। चित्र 1 में, दो सरल घूर्णन प्रक्षेपवक्र काले रंग में दिखाए गए हैं, जबकि एक बाएँ और दाएँ समनमनी प्रक्षेपवक्र क्रमशः लाल और नीले रंग में दिखाए गए हैं। चित्र 2 में, एक सामान्य घुमाव जिसमें ω1 = 1 और ω2 = 5 दिखाया गया है, जबकि चित्र 3 में, एक सामान्य घुमाव जिसमें ω1 = 5 और ω2 = 1 दिखाई जा रही है।

4D घूर्णन मेट्रिसेस उत्पन्न करना

रोड्रिग्स के घूर्णन सूत्र और केली सूत्र से चार आयामी घुमाव प्राप्त किए जा सकते हैं। मान लीजिये A एक 4 × 4 विषम सममित आव्यूह है। विषम सममित आव्यूह A के रूप में विशिष्ट रूप से विघटित किया जा सकता है

दो विषम सममित आव्यूह A1 और A2 में A1A2 = 0, A13 = −A1 और A23 = −A2 गुणों को संतुष्ट करना, जहाँ A θ1i और θ2i के आइगेनवैल्यू हैं। फिर, विषम सममित आव्यूह A1 और A2 से रोड्रिग्स के घूर्णन सूत्र और केली सूत्र द्वारा 4D घूर्णन आव्यूह प्राप्त किए जा सकते हैं।[6]

मान लीजिये A आइगेनवैल्यू ​​​​के सम्मुच्चय के साथ एक 4 × 4 गैर-शून्य विषम सममित आव्यूह बनता है

फिर A के रूप में विघटित किया जा सकता है

जहाँ A1 और A2 विषम-सममित आव्यूह हैं जो गुणों को संतुष्ट करते हैं

इसके अलावा, विषम सममित आव्यूह A1 और A2 के रूप में विशिष्ट रूप से प्राप्त होते हैं

और

फिर,

में एक घूर्णन आव्यूह E4 है, जो रोड्रिग्स के घूर्णन सूत्र द्वारा ईगेनवैल्यू के सम्मुचय के साथ उत्पन्न होता है

भी,

में एक घूर्णन आव्यूह है E4, जो केली के घूर्णन सूत्र द्वारा उत्पन्न होता है, जैसे कि आइगेनवैल्यू ​​​​का सम्मुचय R है,

उत्पादक घूर्णन आव्यूह को मूल्यों के संबंध में θ1 और θ2 वर्गीकृत किया जा सकता है निम्नलिखित नुसार:

  1. यदि θ1 = 0 और θ2 ≠ 0 या इसके विपरीत, तब सूत्र सरल घुमाव उत्पन्न करते हैं;
  2. यदि θ1 और θ2 अशून्य हैं और θ1θ2, तब सूत्र दोहरा घुमाव उत्पन्न करते हैं;
  3. यदि θ1 और θ2 अशून्य हैं और θ1 = θ2, तब सूत्र समनमनी घुमाव उत्पन्न करते हैं।

यह भी देखें

टिप्पणियाँ

  1. Assuming that 4-space is oriented, then an orientation for each of the 2-planes A and B can be chosen to be consistent with this orientation of 4-space in two equally valid ways. If the angles from one such choice of orientations of A and B are {α, β}, then the angles from the other choice are {−α, −β}. (In order to measure a rotation angle in a 2-plane, it is necessary to specify an orientation on that 2-plane. A rotation angle of −π is the same as one of +π. If the orientation of 4-space is reversed, the resulting angles would be either {α, −β} or {−α, β}. Hence the absolute values of the angles are well-defined completely independently of any choices.)
  2. Example of opposite signs: the central inversion; in the quaternion representation the real parts are +1 and −1, and the central inversion cannot be accomplished by a single simple rotation.


संदर्भ

  1. Kim & Rote 2016, pp. 8–10, Relations to Clifford Parallelism.
  2. Kim & Rote 2016, §5 Four Dimensional Rotations.
  3. Perez-Gracia, Alba; Thomas, Federico (2017). "4डी घूर्णन और अनुप्रयोगों के केली के गुणनखंडन पर" (PDF). Adv. Appl. Clifford Algebras. 27: 523–538. doi:10.1007/s00006-016-0683-9. hdl:2117/113067. S2CID 12350382.
  4. Pinkall, U. (1985). "स<उप>3</उप> में हॉफ टोरी" (PDF). Invent. Math. 81 (2): 379–386. Bibcode:1985InMat..81..379P. doi:10.1007/bf01389060. S2CID 120226082. Retrieved 7 April 2015.
  5. Banchoff, Thomas F. (1990). तीसरे आयाम से परे. W H Freeman & Co. ISBN 978-0716750253. Retrieved 2015-04-08.
  6. Erdoğdu, M.; Özdemir, M. (2015). "चार आयामी रोटेशन मैट्रिक्स उत्पन्न करना". {{cite journal}}: Cite journal requires |journal= (help)


ग्रन्थसूची

श्रेणी: चार आयामी ज्यामिति श्रेणी:चतुर्भुज श्रेणी:घूर्णन