इंजन दक्षता

From Vigyanwiki
Revision as of 17:26, 26 January 2023 by alpha>Vikas

ऊष्मीय इंजन की इंजन दक्षता ईंधन में निहित कुल ऊर्जा और उपयोगी कार्य करने के लिए उपयोग की जाने वाली ऊर्जा की मात्रा के बीच का संबंध है। ऊष्मीय इंजन के दो वर्गीकरण हैं-

  1. आंतरिक दहन (ओटो चक्र, डीजल चक्र और गैस टरबाइन- ब्रेटन चक्र इंजन) और
  2. बाहरी दहन इंजन (भाप इंजन, भाप टरबाइन और स्टर्लिंग चक्र इंजन)।

इनमें से प्रत्येक इंजन में तापीय दक्षता विशेषताएँ होती हैं जो इसके लिए अद्वितीय होती हैं।

इंजन दक्षता, ट्रांसमिशन डिज़ाइन और टायर डिज़ाइन सभी वाहन की ईंधन दक्षता में योगदान करते हैं।

गणितीय परिभाषा

एक इंजन की दक्षता को प्रदान किए गए ताप के लिए किए गए उपयोगी कार्य के अनुपात के रूप में परिभाषित किया गया है।

जहाँ पर, अवशोषित ऊष्मा है और किया गया कार्य है।

कृपया ध्यान दें कि किया गया कार्य क्लच या ड्राइवशाफ्ट पर दी गई शक्ति से संबंधित है।

इसका मतलब है कि ऊष्मागतिकी विस्तृत द्वारा किए गए कार्य से घर्षण और अन्य नुकसान कम किये जा सकते हैं। इस प्रकार एक इंजन जो बाहरी वातावरण में कोई कार्य नहीं कर रहा है उसकी दक्षता शून्य हो जाती है।

संपीडन अनुपात

आंतरिक दहन इंजन की दक्षता कई कारकों पर निर्भर करती है, जिनमें से सबसे महत्वपूर्ण विस्तृत अनुपात है। किसी भी ऊष्मा इंजन के लिए जो कार्य उससे प्राप्त किया जा सकता है, वह विस्तृत चरण के दौरान प्रारम्भिक दबाव और अंतिम दबाव के बीच के अंतर के समानुपाती होता है। इसलिए, प्रारम्भिक दबाव को बढ़ाना तथा प्राप्त किये गए कार्य को बढ़ाने का एक प्रभावी तरीका है (समाप्ति के दबाव को कम करना, जैसा कि भाप टर्बाइनों के साथ एक निर्वात में समाप्त हो जाता है, ठीक उसी प्रकार से यह प्रभावी होता है)।

एक विशिष्ट पेट्रोल इंजन गैसोलीन (पेट्रोल) का विस्तृत अनुपात (विशुद्ध रूप से यांत्रिक भागों की ज्यामिति से गणना) 10: 1 (ऑक्टेन रेटिंग) या 9: 1 (नियमित ईंधन) है, कुछ इंजन 1 या अधिकतम 12 के अनुपात तक पहुंचते हैं। विस्तृत अनुपात जितना अधिक होगा, सिद्धांत रूप में इंजन उतना ही अधिक सक्षम होगा, और सिद्धांत रूप में उच्च संपीडन/विस्तृत-अनुपात रूप से पारंपरिक इंजनों को उच्च ऑक्टेन रेटिंग मूल्य वाले गैसोलीन की आवश्यकता होगी, हालांकि यह सरलीकृत विश्लेषण वास्तविक और ज्यामितीय संपीडन अनुपात के बीच के अंतर से जटिल है। उच्च ऑक्टेन मान उच्च संपीडन/उच्च ताप स्थितियों में ईंधन की लगभग तुरंत प्रज्वलन की प्रवृत्ति को रोकता है (विस्फोट या नॉकिंग के रूप में जाना जाता है)। हालांकि, बहुत उच्च संपीडन अनुपात (14-25: 1) के माध्यम से स्पार्क इग्निशन के स्थान पर संपीडन का उपयोग करने वाले इंजनों में, जैसे डीजल इंजन या बॉर्के इंजन के लिए उच्च ऑक्टेन ईंधन आवश्यक नहीं है। वास्तव में, सामान्यतः सीटेन संख्या द्वारा निर्धारित किए गए निम्न-ऑक्टेन ईंधन, इन अनुप्रयोगों में बेहतर होते हैं क्योंकि वे संपीडन के आधार पर अधिक आसानी से प्रज्वलित होते हैं।

आंशिक त्वरित्र स्थितियों के आधार पर (अर्थात जब त्वरित्र पूरी तरह से खुले से कम होता है), प्रभावी संपीडन अनुपात कम होता है तब इंजन पूर्ण त्वरित्र पर काम कर रहा होता है, साधारण तथ्य के कारण पूर्ण वायुमंडलीय दबाव के लिए कक्ष में आने वाली ईंधन-वायु के मिश्रण को प्रतिबन्ध करने का प्रयास करता है क्योकि यह इसे पूर्ण रूप से नहीं भर सकता। जब इंजन पूर्ण रूप से त्वरित्र पर काम कर रहा होता है तो इंजन की दक्षता कम होती है। इस प्रकरण का एक समाधान बहु-सिलेंडर इंजन में लोड को कुछ सिलेंडरों से (उन्हें निष्क्रिय करके) शेष सिलेंडरों में स्थानांतरित करना है ताकि वे उच्च व्यक्तिगत भार के आधार पर काम कर सकें और तदनुसार उच्च प्रभावी संपीडन अनुपात के साथ काम कर सकें। इस तकनीक को परिवर्ती विस्थापन के रूप में जाना जाता है।

अधिकांश पेट्रोल (गैसोलीन, ओटो चक्र) और डीजल (डीजल चक्र) इंजनों का विस्तृत अनुपात संपीडन अनुपात के बराबर होता है। कुछ इंजन, जो एटकिंसन चक्र या मिलर चक्र का उपयोग करते हैं, संपीडन अनुपात से विस्तृत अनुपात होने के कारण बढ़ी हुई दक्षता प्राप्त करते हैं।

डीजल इंजन का संपीडन/विस्तृत अनुपात 14:1 से 25:1 के बीच होता है। इस सन्दर्भ में उच्च संपीडन से उच्च दक्षता का सामान्य नियम लागू नहीं होता है क्योंकि 20:1 से अधिक संपीडन अनुपात वाले डीजल इंजन हैं (प्रत्यक्ष अंत:क्षेपण के विपरीत)। ये ऑटोमोबाइल/कारों और हल्के ट्रकों में आवश्यक उच्च RPM संचालन को संभव बनाने के लिए प्रीचैम्बर का उपयोग करते हैं। प्रीचैंबर से ऊष्मीय और डायनेमिक गैस नुकसान के परिणामस्वरूप प्रत्यक्ष अंत:क्षेपण डीजल (उनके कम संपीडन/विस्तृत अनुपात के बावजूद) अधिक सक्षम होते हैं।

घर्षण

एक इंजन में कई गतिमान पुर्जे होते हैं जो घर्षण उत्पन्न करते हैं। इनमें से कुछ घर्षण बल स्थिर रहते हैं (जब तक लागू भार स्थिर रहता है); इंजन की गति बढ़ने पर इनमें से कुछ घर्षण नुकसान बढ़ जाते हैं, जैसे कि पिस्टन साइड फोर्स और कनेक्टिंग बियरिंग फोर्स (ऑसिलेटिंग पिस्टन से बढ़ी हुई जड़ता बलों के कारण)। उच्च गति पर कुछ घर्षण बल कम हो जाते हैं, जैसे कि कैंषफ़्ट के लोब पर घर्षण बल चार स्ट्रोक चक्र इंजन वाल्व को संचालित करने के लिए उपयोग किया जाता है (उच्च गति पर वाल्व की जड़ता कैम फॉलोअर को कैम लोब से दूर खींचती है)। घर्षण बलों के साथ, एक संचालन इंजन में पंपिंग लॉस होता है, जो कि सिलेंडर में हवा को अंदर और बाहर ले जाने के लिए आवश्यक कार्य है। यह पंपिंग नुकसान कम गति पर न्यूनतम है, लेकिन गति के वर्ग के रूप में लगभग बढ़ जाता है, जब तक कि रेटेड शक्ति पर एक इंजन घर्षण और पंपिंग घाटे को दूर करने के लिए कुल बिजली उत्पादन का लगभग 20% उपयोग कर रहा हो।

ऑक्सीजन

पृथ्वी का वातावरण लगभग 21% ऑक्सीजन है। यदि उचित दहन के लिए पर्याप्त ऑक्सीजन नहीं है, तो ईंधन पूरी तरह से नहीं जलेगा और कम ऊर्जा पैदा करेगा। वायु अनुपात में अत्यधिक समृद्ध ईंधन इंजन से असंतुलित हाइड्रोकार्बन प्रदूषकों को बढ़ाएगा। यदि बहुत अधिक ईंधन होने के कारण सभी ऑक्सीजन की खपत हो जाती है, तो इंजन की शक्ति कम हो जाती है।

जैसे-जैसे दहन का तापमान कम ईंधन वाले हवा के मिश्रण के साथ बढ़ता जाता है, वैसे-वैसे आंशिक रूप से जले हुए हाइड्रोकार्बन प्रदूषकों को नाइट्रोजन ऑक्साइड (एनओएक्स) जैसे वायु प्रदूषण के उच्च स्तरों के विपरीत संतुलित किया जाना चाहिए, जो उच्च दहन तापमान पर निर्मित होते हैं। बाष्पीकरणीय शीतलन के माध्यम से आने वाली हवा को ठंडा करने के लिए दहन कक्ष के प्रवाह के विपरीत दिशा में ईंधन की शुरुआत करके इसे कभी-कभी कम किया जाता है। यह सिलेंडर में प्रवेश करने वाले कुल आवेश को बढ़ा सकता है (चूंकि ठंडी हवा अधिक सघन होगी), जिसके परिणामस्वरूप अधिक शक्ति होगी, लेकिन हाइड्रोकार्बन प्रदूषकों के उच्च स्तर और नाइट्रोजन ऑक्साइड प्रदूषकों के निम्न स्तर भी होंगे। प्रत्यक्ष अंत:क्षेपण के साथ यह प्रभाव उतना बनावटी नहीं है, लेकिन यह कुछ प्रदूषकों जैसे नाइट्रोजन ऑक्साइड (NOx) को कम करने के लिए दहन कक्ष को पर्याप्त रूप से ठंडा कर सकता है, जबकि आंशिक रूप से विघटित हाइड्रोकार्बन जैसे अन्य को ऊपर की दिशा में उत्सर्जित करता है।

वायु-ईंधन मिश्रण एक इंजन में खींचा जाता है क्योंकि पिस्टन के नीचे की ओर गति एक आंशिक निर्वात को प्रेरित करती है। अधिक बिजली का उत्पादन करने के लिए सिलेंडर में एक बड़े आवेश (कृत्रिम प्रेरण) को मजबूर करने के लिए एक गैस कंप्रेसर का अतिरिक्त उपयोग किया जा सकता है। कंप्रेसर या तो यांत्रिक रूप से संचालित सुपरआवेशिंग या निकास संचालित टर्बोआवेशिंग है। किसी भी तरह से, मजबूर प्रेरण सिलेंडर इनलेट पोर्ट के बाहर हवा के दबाव को बढ़ाता है।

इंजन के अंदर उपलब्ध ऑक्सीजन की मात्रा बढ़ाने के अन्य तरीके हैं; उनमें से एक नाइट्रस ऑक्साइड (N2O) का उपयोग करना है, मिश्रण के लिए और कुछ इंजन नाईट्रोमीथेन का उपयोग करते हैं, एक ईंधन जो स्वयं ऑक्सीजन प्रदान करता है जिसे जलाने की आवश्यकता होती है। उसके कारण, मिश्रण ईंधन का 1 भाग और हवा का 3 भाग हो सकता है; इस प्रकार, इंजन के अंदर अधिक ईंधन जलाना और उच्च शक्ति आउटपुट प्राप्त करना संभव है।

आंतरिक दहन इंजन

प्रत्यागामी इंजन

प्रत्यागामी इंजनों में कम तापीय दक्षता होती है क्योंकि इंजन से निकलने वाला एकमात्र प्रयोग करने योग्य काम जनरेटर से होता है।

कम गति पर, गैसोलीन इंजन उच्च अशांति और घर्षण (शीर्ष) हानि से छोटे त्वरित्र के आरम्भ पर दक्षता हानि का सामना करते हैं, जब आने वाली हवा को लगभग बंद त्वरित्र (पंप नुकसान) के आसपास अपना रास्ता लड़ना चाहिए; डीजल इंजनों को इस नुकसान का सामना नहीं करना पड़ता है क्योंकि आने वाली हवा को त्वरित्र नहीं किया जाता है, लेकिन कम मात्रा में बिजली उत्पादन के लिए हवा को संपीडित करने के लिए पूरे आवेश के उपयोग के कारण संपीडन हानि होती है।

उच्च गति पर, दोनों प्रकार के इंजनों में दक्षता पम्पिंग और यांत्रिक घर्षण नुकसान से कम हो जाती है, जिसके भीतर कम अवधि में दहन सम्पादित होता है। उच्च गति के परिणामस्वरूप अधिक ड्रैग भी होता है।

गैसोलीन (पेट्रोल) इंजन

आधुनिक गैसोलीन इंजनों की अधिकतम तापीय क्षमता 50% से अधिक होती है,[1] लेकिन कार को चलाने के लिए उपयोग किए जाने पर सड़क पर नियमित रूप से चलने वाली कारें केवल 20% से 35% होती हैं। दूसरे शब्दों में, भले ही इंजन अधिकतम तापीय दक्षता के अपने बिंदु पर चल रहा हो, खपत किए गए गैसोलीन द्वारा जारी कुल ऊष्मा ऊर्जा का, कुल शक्ति का लगभग 65-80% उपयोगी कार्य में बदले बिना ऊष्मा के रूप में उत्सर्जित होता है।[2] इस अस्वीकृत ऊष्मा का लगभग आधा निकास गैसों द्वारा दूर किया जाता है, और आधा सिलेंडर की दीवारों या सिलेंडर शीर्ष के माध्यम से इंजन शीतलन प्रणाली में जाता है, और शीतलन प्रणाली रेडिएटर के माध्यम से वातावरण में पारित किया जाता है।[3] उत्पन्न कुछ कार्य घर्षण, शोर, वायु अशांति के रूप में भी खो जाता है, और इंजन उपकरण और उपकरण जैसे परिसंचरण पंप और विद्युत आवर्तित्र को चालू करने के लिए उपयोग किया जाने वाला कार्य, वाहन को स्थानांतरित करने के लिए उपलब्ध ईंधन द्वारा जारी ऊर्जा का लगभग 20-35% ही छोड़ता है।

इस इंजन में पेट्रोल और हवा का मिश्रण कार्ब्युरेटर में होता है, जिससे हवा और पेट्रोल का ये मिश्रण सिलेंडर में चला जाता है, इस इंजन में पहले हवा और पेट्रोल संपीडित होता है, इसके बाद फ्यूल इलेक्ट्रिक स्पार्क के ज़रिए प्रज्वलित होता है तत्पश्चात पेट्रोल और हवा के मिश्रण में हवा का औसत ज्यादा होता है.

एक गैसोलीन इंजन गैसोलीन और वायु के मिश्रण को जलाता है, जिसमें हवा के लगभग बारह से अठारह भागों (वजन के अनुसार) से लेकर ईंधन के एक भाग (वजन के अनुसार) तक होता है। 14.7:1 वायु/ईंधन अनुपात वाला मिश्रण रससमीकरणमितीय होता है, अर्थात जब इसे जलाया जाता है, तो इसमें 100% ईंधन और ऑक्सीजन की खपत होती है। थोड़े कम ईंधन वाले मिश्रण, जिन्हें लीन बर्न कहा जाता है, अधिक सक्षम होते हैं। दहन एक प्रतिक्रिया है जो ईंधन के साथ गठबंधन करने के लिए हवा की ऑक्सीजन सामग्री का उपयोग करती है, जो कई हाइड्रोकार्बन का मिश्रण है, जिसके परिणामस्वरूप जल वाष्प, कार्बन डाइऑक्साइड और कभी-कभी कार्बन मोनोआक्साइड और आंशिक रूप से जले हुए हाइड्रोकार्बन होते हैं। इसके अलावा, उच्च तापमान पर ऑक्सीजन नाइट्रोजन के साथ मिलकर नाइट्रोजन ऑक्साइड बनाता है (सामान्यतः NOx के रूप में संदर्भित किया जाता है, क्योंकि इस प्रकार X सबस्क्रिप्ट यौगिक में ऑक्सीजन परमाणुओं की संख्या भिन्न हो सकती है)। यह मिश्रण, अप्रयुक्त नाइट्रोजन और वायुमंडलीय रसायन के साथ, निकास प्रणाली में पाया जाता है।

2008 से 2015 में, जीडीआई (गैसोलीन डायरेक्ट अंत:क्षेपण) ने इस ईंधन प्रणाली से लैस इंजनों की दक्षता को 35% तक बढ़ा दिया।[citation needed] वर्तमान में, 2020 तक विभिन्न प्रकार के वाहनों में यह तकनीक उपलब्ध है।[citation needed]


डीजल इंजन

डीजल चक्र का उपयोग करने वाले इंजन सामान्यतः अधिक सक्षम होते हैं, हालांकि समान संपीडन अनुपात में डीजल चक्र स्वयं कम सक्षम होता है। चूंकि डीजल इंजन बहुत अधिक संपीडन अनुपात का उपयोग करते हैं (संपीडन की ऊष्मा का उपयोग धीमी गति से जलने वाले डीजल ईंधन को प्रज्वलित करने के लिए किया जाता है), यह उच्च अनुपात इंजन के भीतर वायु पम्पिंग नुकसान की भरपाई से अधिक है।

आधुनिक टर्बो-डीजल इंजन दक्षता बढ़ाने के लिए इलेक्ट्रॉनिक रूप से नियंत्रित कॉमन-रेल फ्यूल अंत:क्षेपण का उपयोग करते हैं। ज्यामितीय रूप से परिवर्तनीय टर्बो-आवेशिंग सिस्टम (यद्यपि अधिक रखरखाव) की मदद से यह इंजन के टॉर्क को कम इंजन गति (1,200–1,800 rpm) पर भी बढ़ाता है। MAN B&W डीजल S80ME-C7 जैसे कम गति वाले डीजल इंजनों ने 54.4% की समग्र ऊर्जा रूपांतरण दक्षता प्राप्त की है, जो किसी भी एकल-चक्र आंतरिक दहन या बाहरी दहन इंजन द्वारा ईंधन के बिजली में उच्चतम रूपांतरण है।[4][5][6] बड़े डीजल ट्रकों, बसों और नई डीजल कारों में इंजन लगभग 45% चरम दक्षता प्राप्त कर सकते हैं।[7]


गैस टर्बाइन

गैस टर्बाइन अधिकतम बिजली उत्पादन में सबसे अधिक सक्षम है उसी तरह पारस्परिक इंजन अधिकतम भार पर सबसे अधिक सक्षम होते हैं। अंतर यह है कि कम घूर्णी गति पर संपीडित हवा का दबाव कम हो जाता है और इस प्रकार ऊष्मीय और ईंधन दक्षता बनावटी रूप से कम हो जाती है। कम बिजली उत्पादन के साथ दक्षता में लगातार गिरावट आती है और कम बिजली की सीमा में बहुत खराब है।

गैस टर्बाइन एक प्रकार का अंतर्दहन इंजन है जो घूमने के लिए आवश्यक ऊर्जा ज्वलनशील गैस के प्रवाह से प्राप्त करता है और इसी कारण इसे 'दहन टर्बाइन' भी कहा जाता है। चूंकि टरबाइन की गति घूर्णी (रोटरी) होती है, यह विद्युत जनित्र को घुमाने के लिए विशेष रूप से उपयुक्त है।

जनरल मोटर्स ने एक गैस टरबाइन द्वारा संचालित बस का निर्माण किया, लेकिन 1970 के दशक में कच्चे तेल की कीमतों में वृद्धि के कारण इस अवधारणा को छोड़ दिया गया। रोवर (मार्के), क्रिसलर, और टोयोटा ने टर्बाइन संचालित कारों के प्रोटोटाइप भी बनाए, क्रिसलर ने वास्तविक दुनिया के मूल्यांकन के लिए उनमें से एक छोटी प्रोटोटाइप श्रृंखला का निर्माण किया। ड्राइविंग के लिए आरामयुक्त था किन्तु ऊपर बताए गए कारणों से समग्र अर्थव्यवस्था में कमी आई। यही कारण है कि गैस टर्बाइनों का उपयोग स्थायी और चरम शक्ति विद्युत संयंत्रों के लिए किया जा सकता है। इस अनुप्रयोग में वे केवल पूर्ण शक्ति पर या उसके करीब चलते हैं जहां वे सक्षम होते हैं या जरूरत न होने पर बंद हो जाते हैं।

गैस टर्बाइनों को शक्ति घनत्व में लाभ होता है - गैस टर्बाइनों का उपयोग भारी आवरणयुक्त वाहनों और आवरणयुक्त टैंकों में इंजन के रूप में और जेट लड़ाकू विमानों में बिजली जनरेटर में किया जाता है।

गैस टरबाइन दक्षता को नकारात्मक रूप से प्रभावित करने वाला एक अन्य कारक परिवेशी वायु तापमान है। बढ़ते तापमान के साथ, अंतर्ग्रहण हवा कम संघनित हो जाती है और इसलिए गैस टरबाइन परिवेशी वायु तापमान में वृद्धि के अनुपात में शक्ति हानि का अनुभव करता है।[8] नवीनतम पीढ़ी के गैस टरबाइन इंजनों ने सरल चक्र दहन टरबाइन में 46% और संयुक्त चक्र में उपयोग किए जाने पर 61% की दक्षता प्राप्त की है।[9]


बाहरी दहन इंजन

भाप इंजन

यह भी देखें: भाप इंजन दक्षता
यह भी देखें: भाप शक्ति की समयरेखा

पिस्टन इंजन

भाप इंजन और टर्बाइन रैंकिन चक्र पर काम करते हैं, जिसमें व्यावहारिक इंजनों के लिए 63% की अधिकतम कार्नाट दक्षता होती है, भाप टर्बाइन पावर प्लांट 40% के मध्य में दक्षता प्राप्त करने में सक्षम होते हैं।

भाप इंजन की दक्षता मुख्य रूप से भाप के तापमान और दबाव और चरणों या विस्तृत की संख्या से संबंधित होती है।[10] संचालन सिद्धांतों की खोज के रूप में भाप इंजन की दक्षता में सुधार हुआ, जिससे ऊष्मप्रवैगिकी के विज्ञान का विकास हुआ। ग्राफ देखें:भाप इंजन दक्षता

प्रारम्भिक भाप इंजनों में बॉयलर को इंजन का हिस्सा माना जाता था। आज उन्हें अलग माना जाता है, इसलिए यह जानना आवश्यक है कि क्या बताई गई दक्षता समग्र है, जिसमें शीर्ष्फ इंजन बॉयलर सम्मिलित है।

प्रारम्भिक भाप इंजनों की दक्षता और शक्ति की तुलना कई कारणों से मुश्किल है: 1) कोयले के एक बुशल के लिए कोई मानक वजन नहीं था, जो 82 से 96 पाउंड (37 से 44 किलो) तक कहीं भी हो सकता था। 2) कोयले के लिए कोई मानक ताप मूल्य नहीं था, और अनुमानतः ताप मान को मापने का कोई तरीका नहीं था। आज के भाप के कोयले की तुलना में कोयले का ताप मान बहुत अधिक था, जिसमें कभी-कभी 13,500 बीटीयू/पाउंड (31 मेगाजूल/किग्रा) का उल्लेख किया गया था। 3) दक्षता को कर्तव्य के रूप में रिपोर्ट किया गया था, जिसका अर्थ है कि काम करने वाले के द्वारा पानी के कितने फुट पाउंड (या न्यूटन-मीटर) का उत्पादन किया गया था, लेकिन यांत्रिक पंपिंग दक्षता ज्ञात नहीं है।[10]

1710 के आसपास थॉमस न्यूकोमेन द्वारा विकसित पहला पिस्टन भाप इंजन, आधे प्रतिशत (0.5%) से थोड़ा अधिक सक्षम था। यह लोड द्वारा सिलेंडर में खींचे गए वायुमंडलीय दबाव के पास भाप से संचालित होता है, फिर ठंडे पानी के एक स्प्रे द्वारा भाप से भरे सिलेंडर में संघनित होता है, जिससे सिलेंडर में आंशिक वैक्यूम होता है और वातावरण का दबाव पिस्टन को नीचे ले जाता है। सिलेंडर को बर्तन के रूप में उपयोग करना जिसमें भाप को संघनित करना भी सिलेंडर को ठंडा करता है, जिससे अगले चक्र पर आने वाली भाप में कुछ ऊष्मा सिलेंडर को गर्म करने में खो जाती है, जिससे ऊष्मीय दक्षता कम हो जाती है। न्यूकॉमन इंजन में जॉन स्मेटन द्वारा किए गए सुधारों ने दक्षता को 1% से अधिक बढ़ा दिया।

जेम्स वॉट ने न्यूकमेन वायुमंडलीय इंजन में कई सुधार किए, जिनमें से सबसे महत्वपूर्ण बाहरी संघनित्र था, जिसने ठण्डे पानी को सिलेंडर को ठंडा करने से रोका। वाट इंजन वायुमंडलीय दबाव से थोड़ा ऊपर भाप से संचालित होता था। वाट के सुधारों ने दक्षता में 2.5 गुना से अधिक की वृद्धि की।[11]

सक्षम यांत्रिकी, मशीन औज़ार और निर्माण विधियों सहित सामान्य यांत्रिक क्षमता की कमी ने लगभग 1840 तक वास्तविक इंजनों की दक्षता और उनके डिजाइन को सीमित कर दिया।[12] उच्च दबाव वाले इंजन ओलिवर इवांस द्वारा और स्वतंत्र रूप से रिचर्ड ट्रेविथिक द्वारा विकसित किए गए थे। ये इंजन बहुत सक्षम नहीं थे, लेकिन उच्च शक्ति-से-भार अनुपात था, जिससे उन्हें लोकोमोटिव और नावों को शक्ति देने के लिए उपयोग किया जा सकता था।

केन्द्रापसारक गवर्नर, जिसका उपयोग पहली बार वाट द्वारा एक स्थिर गति बनाए रखने के लिए किया गया था, इनलेट भाप को त्वरित्रिंग करके काम किया, जिससे दबाव कम हो गया, जिसके परिणामस्वरूप उच्च (वायुमंडलीय से ऊपर) दबाव इंजनों पर दक्षता का नुकसान हुआ।[13] बाद में नियंत्रण विधियों ने इस दबाव हानि को कम या समाप्त कर दिया।

कॉर्लिस भाप इंजन (पेटेंट। 1849) का बेहतर वाल्विंग तंत्र अलग-अलग भार के साथ गति को समायोजित करने में सक्षम था और दक्षता में लगभग 30% की वृद्धि हुई। कॉर्लिस इंजन में इनलेट और एग्जॉस्ट भाप के लिए अलग-अलग वॉल्व और हेडर थे, इसलिए हॉट फीड भाप ने कभी भी कूलर एग्जॉस्ट पोर्ट और वॉल्विंग से संपर्क नहीं किया। वाल्व तेजी से कार्य कर रहे थे, जिससे भाप के त्वरित्रिंग की मात्रा कम हो गई और परिणामस्वरूप तेजी से प्रतिक्रिया हुई। त्वरित्रिंग वाल्व को संचालित करने के बजाय, गवर्नर का उपयोग वाल्व टाइमिंग को समायोजित करने के लिए किया गया था ताकि वेरिएबल भाप कट ऑफ दिया जा सके। कॉर्लिस इंजन की दक्षता में वृद्धि के एक बड़े हिस्से के लिए चर कट ऑफ जिम्मेदार था।[14] कॉर्लिस से पहले के अन्य लोगों के पास इस विचार का कम से कम हिस्सा था, जिसमें जकारिया एलन भी सम्मिलित था, जिन्होंने वेरिएबल कट ऑफ का पेटेंट कराया था, लेकिन मांग में कमी, बढ़ी हुई लागत और जटिलता और खराब विकसित मशीनिंग तकनीक ने कॉर्लिस तक परिचय में देरी की।[14]

पोर्टर-एलेन हाई स्पीड इंजन (सी.ए. 1862) अन्य समान आकार के इंजनों की गति से तीन से पांच गुना अधिक गति से संचालित होता था। उच्च गति ने सिलेंडर में संक्षेपण की मात्रा को कम कर दिया, जिसके परिणामस्वरूप दक्षता में वृद्धि हुई।[14]

यौगिक इंजन ने दक्षता में और सुधार किए।[14]1870 के दशक तक जहाजों पर ट्रिपल विस्तृत इंजन का उपयोग किया जा रहा था। कंपाउंड इंजन ने जहाजों को माल ढुलाई से कम कोयला ले जाने की अनुमति दी।[15] कुछ लोकोमोटिव पर कंपाउंड इंजन का उपयोग किया गया था लेकिन उनकी यांत्रिक जटिलता के कारण व्यापक रूप से अपनाया नहीं गया था।

एक बहुत अच्छी तरह से डिजाइन और निर्मित भाप लोकोमोटिव अपने सुनहरे दिनों में लगभग 7-8% दक्षता प्राप्त करता था।[16] सबसे सक्षम प्रत्यागामी भाप इंजन डिजाइन (प्रति चरण) यूनिफ्लो भाप इंजन था, लेकिन जब तक यह दिखाई दिया तब तक डीजल इंजनों द्वारा भाप को विस्थापित किया जा रहा था, जो और भी अधिक सक्षम थे और कोयले से निपटने और तेल के लिए कम श्रम की आवश्यकता का लाभ था, अधिक सघन ईंधन होने के कारण, कम माल विस्थापित हुआ।

1940 के दशक की शुरुआत में एकत्र किए गए आँकड़ों का उपयोग करते हुए, सांता फ़े रेलरोड ने एफटी इकाइयों की तुलना में भाप इंजनों के अपने बेड़े की दक्षता को मापा, जिसे वे महत्वपूर्ण संख्या में सेवा में लगा रहे थे। उन्होंने निर्धारित किया कि भाप इंजनों में इस्तेमाल होने वाले एक टन तेल ईंधन की लागत $ 5.04 थी और औसतन 20.37 ट्रेन मील सिस्टम चौड़ा हुआ। डीजल ईंधन की कीमत 11.61 डॉलर थी लेकिन प्रति टन 133.13 ट्रेन मील का उत्पादन किया। वास्तव में, डीजल ईंधन का उपयोग करने वाले स्टीमर की तुलना में छह गुना अधिक चला, जिसकी लागत केवल दोगुनी थी। यह भाप की तुलना में डीजल इंजनों की बेहतर तापीय दक्षता के कारण था। संभावित रूप से माइलेज मानक के रूप में उपयोग की जाने वाली ट्रेनें 4,000 टन माल ढुलाई होती हैं जो उस समय सामान्य टैनेज एल (एसआईसी) थी।


Using statistics collected during the early 1940s, the Santa Fe Railroad measured the efficiency of their fleet of steam locomotives in comparison with the FT units that they were just putting into service in significant numbers. They determined that the cost of a ton of oil fuel used in steam engines was $5.04 and yielded 20.37 train miles system wide on average. Diesel fuel cost $11.61 but produced 133.13 train miles per ton. In effect, diesels ran six times as far as steamers utilizing fuel that cost only twice as much. This was due to the much better thermal efficiency of diesel engines compared to steam. Presumably the trains used as a milage standard were 4,000 ton freight consists which was the normal tannage l (sic) at that time.

— जिम वैले, "भाप इंजन कितना कार्यक्षम है? " "How efficient is a steam engine?"[16]


भाप टर्बाइन

भाप टर्बाइन सबसे सक्षम भाप इंजन है और इस कारण से विद्युत उत्पादन के लिए सार्वभौमिक रूप से उपयोग किया जाता है। टर्बाइन में भाप का विस्तृत लगभग निरंतर होता है, जो टर्बाइन को बहुत बड़ी संख्या में विस्तृत चरणों के बराबर बनाता है। महत्वपूर्ण बिंदु (ऊष्मप्रवैगिकी) पर काम कर रहे भाप जीवाश्म ईंधन पावर स्टेशन की दक्षता कम 40% रेंज में है। टर्बाइन प्रत्यक्ष रोटरी गति का उत्पादन करते हैं और कहीं अधिक कॉम्पैक्ट होते हैं और पारस्परिक इंजनों की तुलना में बहुत कम वजन करते हैं और बहुत स्थिर गति के भीतर नियंत्रित किए जा सकते हैं। जैसा कि गैस टर्बाइन के सन्दर्भ में होता है, भाप टर्बाइन पूर्ण शक्ति पर सबसे अधिक सक्षमता से काम करता है, और धीमी गति से खराब होता है। इस कारण से, उनके उच्च शक्ति से वजन अनुपात के बावजूद, भाप टर्बाइनों का मुख्य रूप से उन अनुप्रयोगों में उपयोग किया जाता है जहां उन्हें स्थिर गति से चलाया जा सकता है। एसी विद्युत उत्पादन में सही आवृत्ति बनाए रखने के लिए अत्यंत स्थिर टरबाइन गति बनाए रखना आवश्यक है।

स्टर्लिंग इंजन

स्टर्लिंग इंजन में किसी भी ऊष्मीय इंजन की उच्चतम सैद्धांतिक दक्षता होती है, लेकिन इसका उत्पादन शक्ति और भार अनुपात कम होता है, इसलिए व्यावहारिक आकार के स्टर्लिंग इंजन बड़े होते हैं। स्टर्लिंग इंजन का आकार प्रभाव तापमान में वृद्धि के साथ गैस के विस्तृत पर निर्भरता और इंजन घटकों के कार्य तापमान पर व्यावहारिक सीमा के कारण होता है। एक आदर्श गैस के लिए, किसी दिए गए आयतन के लिए इसका पूर्ण तापमान बढ़ाना, केवल इसके दबाव को आनुपातिक रूप से बढ़ाता है, इसलिए, जहां स्टर्लिंग इंजन का कम दबाव वायुमंडलीय होता है, इसका व्यावहारिक दबाव अंतर तापमान सीमा से बाधित होता है और सामान्यतः एक जोड़े से अधिक नहीं होता है। वायुमंडल का, स्टर्लिंग इंजन के पिस्टन दबाव को बहुत कम कर देता है, इसलिए उपयोगी आउटपुट पावर प्राप्त करने के लिए अपेक्षाकृत बड़े पिस्टन क्षेत्रों की आवश्यकता होती है।

यह भी देखें

संदर्भ

  1. "How F1 technology has supercharged the world | Formula 1®". www.formula1.com (in English). Retrieved 2020-10-11.
  2. Baglione, Melody L. (2007). Development of System Analysis Methodologies and Tools for Modeling and Optimizing Vehicle System Efficiency (Ph.D.). University of Michigan. pp. 52–54. hdl:2027.42/57640.
  3. "Web Page Under Construction".
  4. "Low Speed Engines Tech Paper" (PDF). Man Diesel and Turbo. Retrieved 2017-04-25.
  5. "Mitsubishi Heavy Industries Technical Review Vol.45 No.1 (2008)" (PDF). March 2008. Archived (PDF) from the original on June 10, 2011. Retrieved 2017-04-25.
  6. "MHI Achieves 1,600°C Turbine Inlet Temperature in Test Operation of World's Highest Thermal Efficiency "J-Series" Gas Turbine". Mitsubishi Heavy Industries. May 26, 2011. Archived from the original on March 18, 2012.
  7. "Medium and Heavy Duty Diesel Vehicle Modeling Using a Fuel Consumption Methodology" (PDF). US EPA. 2004. Retrieved 2017-04-25.
  8. "Gas turbine plant efficiency - balancing power, heat and operational flexibility - Cogeneration & On-Site Power Production". www.cospp.com. Archived from the original on 2012-03-28.
  9. "Gas Turbines breaking the 60% efficiency barrier". deCentralized Energy. 2015-01-05. Retrieved 2017-04-25.
  10. 10.0 10.1 Thurston, Robert H. (1875). A History of the Growth of the Steam-Engine. D. Appleton & Co. pp. 464–70. Archived from the original on 1997-06-29. Retrieved 2011-10-06.
  11. John Enys, "Remarks on the Duty of the Steam Engines employed in the Mines of Cornwall at different periods", Transactions of the Institution of Civil Engineers, Volume 3 (14 January 1840), pg. 457
  12. Roe, Joseph Wickham (1916). English and American Tool Builders. New Haven, Connecticut: Yale University Press. ISBN 978-0-917914-73-7. LCCN 16011753.. Reprinted by McGraw-Hill, New York and London, 1926 (LCCN 27-24075); and by Lindsay Publications, Inc., Bradley, Illinois, (ISBN 978-0-917914-73-7).
  13. Benett, Stuart (1986). A History of Control Engineering 1800-1930. Institution of Engineering and Technology. ISBN 978-0-86341-047-5.
  14. 14.0 14.1 14.2 14.3 Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730-1930, Vol. 2: Steam Power. Charlottesville: University Press of Virginia.
  15. Wells, David A. (1891). Recent Economic Changes and Their Effect on Production and Distribution of Wealth and Well-Being of Society. New York: D. Appleton and Co. ISBN 0-543-72474-3. RECENT ECONOMIC CHANGES AND THEIR EFFECT ON DISTRIBUTION OF WEALTH AND WELL BEING OF SOCIETY WELLS.
  16. 16.0 16.1 jfallon (2011-01-10). "How efficient is a steam engine?". Trains.com. Retrieved 2017-04-25.


बाहरी कड़ियाँ