विशिष्ट आवेग
विशिष्ट आवेग (आमतौर पर संक्षिप्त Isp) एक प्रतिक्रिया द्रव्यमान इंजन (ईंधन का उपयोग कर एक रॉकेट इंजन या ईंधन का उपयोग कर जेट इंजिन) कितनी कुशलता से जोर देता है इसका एक उपाय है। इंजनों के लिए जिनकी प्रतिक्रिया द्रव्यमान केवल उनके द्वारा ले जाने वाला ईंधन है, विशिष्ट आवेग प्रभावी निकास गैस वेग के समानुपाती होता है।
उच्च विशिष्ट आवेग वाली प्रणोदन प्रणाली प्रणोदक के द्रव्यमान का अधिक कुशलता से उपयोग करती है। रॉकेट के मामले में, इसका मतलब है कि दिए गए डेल्टा-सीी के लिए कम प्रणोदक की आवश्यकता है,[1][2] ताकि इंजन से जुड़ा वाहन अधिक कुशलता से ऊंचाई और वेग प्राप्त कर सके।
एक वायुमंडलीय संदर्भ में, विशिष्ट आवेग में बाहरी हवा के द्रव्यमान द्वारा प्रदान किए गए आवेग में योगदान शामिल हो सकता है जो इंजन द्वारा किसी तरह से त्वरित किया जाता है, जैसे कि आंतरिक टर्बोफैन या ईंधन दहन भागीदारी द्वारा हीटिंग, फिर जोर विस्तार या बाहरी प्रोपेलर द्वारा। जेट इंजन दहन और बाय-पास दोनों के लिए बाहरी हवा में सांस लेते हैं, और इसलिए रॉकेट इंजनों की तुलना में बहुत अधिक विशिष्ट आवेग होते हैं। खर्च किए गए प्रणोदक द्रव्यमान के संदर्भ में विशिष्ट आवेग में प्रति समय दूरी की इकाइयां होती हैं, जो एक काल्पनिक वेग है जिसे प्रभावी निकास वेग कहा जाता है। यह वास्तविक निकास वेग से अधिक है क्योंकि दहन वायु के द्रव्यमान का हिसाब नहीं दिया जा रहा है। निर्वात में चलने वाले रॉकेट इंजनों में निकास का वास्तविक और प्रभावी वेग समान होता है।
विशिष्ट आवेग संबंध द्वारा थ्रस्ट-विशिष्ट ईंधन खपत (SFC) के व्युत्क्रमानुपाती होता है Isp = 1/(go·SFC) एसएफसी के लिए किग्रा/(एन·एस) में और Isp = 3600/SFC एसएफसी के लिए एलबी/(एलबीएफ·घंटा) में।
सामान्य विचार
प्रणोदक की मात्रा या तो द्रव्यमान या भार की इकाइयों में मापी जा सकती है। यदि द्रव्यमान का उपयोग किया जाता है, तो विशिष्ट आवेग द्रव्यमान की प्रति इकाई एक आवेग (भौतिकी) है, जो आयामी विश्लेषण गति की इकाइयों को दिखाता है, विशेष रूप से प्रभावी निकास वेग। जैसा कि एसआई प्रणाली द्रव्यमान आधारित है, इस प्रकार का विश्लेषण आमतौर पर मीटर प्रति सेकंड में किया जाता है। यदि एक बल-आधारित इकाई प्रणाली का उपयोग किया जाता है, तो आवेग को प्रणोदक भार (वजन बल का एक उपाय है) से विभाजित किया जाता है, जिसके परिणामस्वरूप समय (सेकंड) की इकाइयां होती हैं। ये दो फॉर्मूलेशन मानक मानक गुरुत्व (g द्वारा एक दूसरे से भिन्न होते हैं0) पृथ्वी की सतह पर।
प्रति इकाई समय में एक रॉकेट (उसके प्रणोदक सहित) के संवेग परिवर्तन की दर प्रणोद के बराबर होती है। उच्च विशिष्ट आवेग, एक निश्चित समय के लिए दिए गए जोर का उत्पादन करने के लिए कम प्रणोदक की आवश्यकता होती है और प्रणोदक अधिक कुशल होता है। यह ऊर्जा दक्षता (भौतिकी) की भौतिकी अवधारणा के साथ भ्रमित नहीं होना चाहिए, जो विशिष्ट आवेग में वृद्धि के रूप में घट सकता है, क्योंकि उच्च विशिष्ट आवेग देने वाले प्रणोदन प्रणालियों को ऐसा करने के लिए उच्च ऊर्जा की आवश्यकता होती है।[3] जोर और विशिष्ट आवेग भ्रमित नहीं होना चाहिए। थ्रस्ट इंजन द्वारा आपूर्ति किया गया बल है और इंजन के माध्यम से प्रवाहित प्रतिक्रिया द्रव्यमान की मात्रा पर निर्भर करता है। विशिष्ट आवेग प्रणोदक की प्रति इकाई उत्पन्न आवेग को मापता है और निकास वेग के समानुपाती होता है। जोर और विशिष्ट आवेग प्रश्न में इंजन के डिजाइन और प्रणोदक से संबंधित हैं, लेकिन यह रिश्ता कमजोर है। उदाहरण के लिए, तरल रॉकेट प्रणोदक#Hydrogen|LH2/यह2बाइप्रोपेलेंट अधिक उत्पादन करता है Isp लेकिन RP-1/लिक्विड ऑक्सीजन|LO से कम थ्रस्ट2निकास गैसों के कम घनत्व और उच्च वेग (पानी के गुण | एच2ओ बनाम कार्बन डाइऑक्साइड | सीओ2और वह2ओ). कई मामलों में, बहुत उच्च विशिष्ट आवेग वाले प्रणोदन सिस्टम - कुछ आयन थ्रस्टर्स 10,000 सेकंड तक पहुंचते हैं - कम थ्रस्ट उत्पन्न करते हैं।[4] विशिष्ट आवेग की गणना करते समय, उपयोग से पहले वाहन के साथ ले जाने वाले प्रणोदक को ही गिना जाता है। एक रासायनिक रॉकेट के लिए, प्रणोदक द्रव्यमान में ईंधन और ऑक्सीकारक दोनों शामिल होंगे। रॉकेटरी में, एक उच्च विशिष्ट आवेग वाला एक भारी इंजन कम विशिष्ट आवेग के साथ एक हल्के इंजन के रूप में ऊंचाई, दूरी या वेग प्राप्त करने में उतना प्रभावी नहीं हो सकता है, खासकर अगर बाद वाला इंजन उच्च थ्रस्ट-टू-वेट अनुपात रखता है। अधिकांश रॉकेट डिजाइनों के कई चरण होने का यह एक महत्वपूर्ण कारण है। पहले चरण को उच्च जोर के लिए अनुकूलित किया गया है ताकि बाद के चरणों को उच्च विशिष्ट आवेग के साथ उच्च ऊंचाई पर बढ़ाया जा सके जहां वे अधिक कुशलता से प्रदर्शन कर सकें।
वायु-श्वास इंजनों के लिए, केवल ईंधन का द्रव्यमान गिना जाता है, न कि इंजन से गुजरने वाली वायु का द्रव्यमान। वायु प्रतिरोध और इंजन की तेज जलने की दर पर एक उच्च विशिष्ट आवेग रखने में असमर्थता के कारण सभी प्रणोदक का उपयोग जितनी जल्दी हो सके नहीं किया जाता है।
यदि यह वायु प्रतिरोध और उड़ान के दौरान प्रणोदक की कमी के लिए नहीं थे, तो विशिष्ट आवेग प्रणोदक भार या द्रव्यमान को आगे की गति में परिवर्तित करने में इंजन की प्रभावशीलता का प्रत्यक्ष उपाय होगा।
इकाइयां
Specific impulse | Effective exhaust velocity |
Specific fuel consumption | ||
---|---|---|---|---|
By weight | By mass | |||
SI | = x s | = 9.80665·x N·s/kg | = 9.80665·x m/s | = 101,972/x g/(kN·s) |
English engineering units | = x s | = x lbf·s/lb | = 32.17405·x ft/s | = 3,600/x lb/(lbf·hr) |
विशिष्ट आवेग के लिए सबसे आम इकाई दूसरी है, क्योंकि मान समान हैं चाहे गणना एसआई, शाही इकाइयों या प्रथागत इकाइयों इकाइयों में की जाती है। लगभग सभी निर्माता सेकंड में अपने इंजन के प्रदर्शन को उद्धृत करते हैं, और इकाई विमान इंजन के प्रदर्शन को निर्दिष्ट करने के लिए भी उपयोगी होती है।[5] प्रभावी निकास वेग निर्दिष्ट करने के लिए प्रति सेकंड मीटर का उपयोग भी यथोचित सामान्य है। रॉकेट इंजनों का वर्णन करते समय इकाई सहज है, हालांकि इंजनों की प्रभावी निकास गति वास्तविक निकास गति से काफी भिन्न हो सकती है, विशेष रूप से गैस जनरेटर चक्र इंजनों में। हवा में सांस लेने वाला जेट इंजन के लिए, प्रभावी निकास वेग शारीरिक रूप से अर्थपूर्ण नहीं है, हालांकि इसका उपयोग तुलनात्मक उद्देश्यों के लिए किया जा सकता है।[6] मीटर प्रति सेकंड संख्यात्मक रूप से न्यूटन-सेकंड प्रति किग्रा (एन · एस / किग्रा) के बराबर है, और विशिष्ट आवेग के एसआई माप को या तो इकाइयों के रूप में एक दूसरे के रूप में लिखा जा सकता है। यह इकाई प्रणोदक के प्रति इकाई द्रव्यमान के आवेग (भौतिकी) के रूप में विशिष्ट आवेग की परिभाषा पर प्रकाश डालती है।
थ्रस्ट विशिष्ट ईंधन की खपत विशिष्ट आवेग के व्युत्क्रमानुपाती होती है और इसमें g/(kN·s) या lb/(lbf·hr) की इकाइयाँ होती हैं। वायु-श्वास जेट इंजनों के प्रदर्शन का वर्णन करने के लिए विशिष्ट ईंधन खपत का व्यापक रूप से उपयोग किया जाता है।[7]
सेकंड में विशिष्ट आवेग
This section needs additional citations for verification. (August 2019) (Learn how and when to remove this template message) |
विशिष्ट आवेग, जिसे सेकंड में मापा जाता है, प्रभावी रूप से इसका अर्थ है कि इस इंजन के साथ जोड़े जाने पर यह प्रणोदक कितने सेकंड में अपने स्वयं के प्रारंभिक द्रव्यमान को 1 g पर बढ़ा सकता है। जितना अधिक समय तक यह अपने स्वयं के द्रव्यमान को गति दे सकता है, उतना अधिक डेल्टा-वी यह पूरे सिस्टम को वितरित करता है।
दूसरे शब्दों में, एक विशेष इंजन और एक विशेष प्रणोदक के द्रव्यमान को देखते हुए, विशिष्ट आवेग मापता है कि इंजन कितने समय तक प्रणोदक के उस द्रव्यमान को पूरी तरह से जलाने तक निरंतर बल (जोर) लगा सकता है। अधिक ऊर्जा-सघन प्रणोदक का दिया गया द्रव्यमान इंजन में जलते समय समान बल लगाने के लिए बनाए गए कुछ कम ऊर्जा-घने प्रणोदक की तुलना में अधिक समय तक जल सकता है। एक ही प्रणोदक को जलाने वाले विभिन्न इंजन डिजाइन उनके प्रणोदक की ऊर्जा को प्रभावी जोर में निर्देशित करने में समान रूप से कुशल नहीं हो सकते हैं।
सभी वाहनों के लिए, सेकंड में विशिष्ट आवेग (प्रणोदक की प्रति इकाई वजन-पर-पृथ्वी पर आवेग) को निम्नलिखित समीकरण द्वारा परिभाषित किया जा सकता है:[8]
- इंजन से प्राप्त जोर है (न्यूटन (यूनिट) एस या पाउंड (बल)),
- मानक गुरुत्वाकर्षण है, जो मुख्य रूप से पृथ्वी की सतह पर गुरुत्वाकर्षण है (एम/एस2 या फ़ीट/सेकंड2),
- विशिष्ट आवेग मापा जाता है (सेकंड),
- खर्च किए गए प्रणोदक की द्रव्यमान प्रवाह दर (kg/s या स्लग (इकाई)s/s) है
स्लग की तुलना में अंग्रेजी इकाई पाउंड (द्रव्यमान) का अधिक सामान्य रूप से उपयोग किया जाता है, और द्रव्यमान प्रवाह दर के लिए पाउंड प्रति सेकंड का उपयोग करते समय, रूपांतरण स्थिरांक g0 अनावश्यक हो जाता है, क्योंकि स्लग विमीय रूप से जी द्वारा विभाजित पाउंड के बराबर है0:
इस सूत्रीकरण का लाभ यह है कि इसका उपयोग रॉकेटों के लिए किया जा सकता है, जहां सभी प्रतिक्रिया द्रव्यमान को बोर्ड पर ले जाया जाता है, साथ ही हवाई जहाज, जहां अधिकांश प्रतिक्रिया द्रव्यमान वातावरण से लिया जाता है। इसके अलावा, यह एक परिणाम देता है जो उपयोग की गई इकाइयों से स्वतंत्र होता है (बशर्ते इस्तेमाल किए गए समय की इकाई दूसरी हो)।
रॉकेटरी
रॉकेटरी में, केवल प्रतिक्रिया द्रव्यमान ही प्रणोदक होता है, इसलिए विशिष्ट आवेग की गणना एक वैकल्पिक विधि का उपयोग करके की जाती है, जो सेकंड की इकाइयों के साथ परिणाम देता है। विशिष्ट आवेग को प्रणोदक के पृथ्वी पर प्रति इकाई भार समय के साथ एकीकृत जोर के रूप में परिभाषित किया गया है:[9]
- विशिष्ट आवेग सेकंड में मापा जाता है,
- इंजन की धुरी के साथ औसत निकास गति है (एम/एस या फीट/एस में),
- मानक गुरुत्व है (एम/एस में2 या फ़ीट/सेकंड2).
रॉकेटों में, वायुमंडलीय प्रभावों के कारण, विशिष्ट आवेग ऊंचाई के साथ भिन्न होता है, एक निर्वात में अधिकतम तक पहुंचता है। ऐसा इसलिए है क्योंकि निकास वेग केवल कक्ष दबाव का कार्य नहीं है, बल्कि डी लवल नोजल है। मान आमतौर पर समुद्र तल (एसएल) या वैक्यूम (खाली) में संचालन के लिए दिए जाते हैं।
=== प्रभावी निकास वेग === के रूप में विशिष्ट आवेग
This section needs additional citations for verification. (August 2019) (Learn how and when to remove this template message) |
जी के भूस्थैतिक कारक के कारण0 विशिष्ट आवेग के समीकरण में, कई वैकल्पिक परिभाषा पसंद करते हैं। एक रॉकेट के विशिष्ट आवेग को प्रणोदक के प्रति इकाई द्रव्यमान प्रवाह के जोर के संदर्भ में परिभाषित किया जा सकता है। यह रॉकेट प्रणोदक की प्रभावशीलता को परिभाषित करने का एक समान रूप से मान्य (और कुछ हद तक सरल) तरीका है। एक रॉकेट के लिए, इस तरह परिभाषित विशिष्ट आवेग रॉकेट के सापेक्ष प्रभावी निकास वेग है, ve. वास्तविक रॉकेट नोजल में, निकास वेग पूरे निकास क्रॉस सेक्शन पर वास्तव में एक समान नहीं होता है और ऐसे वेग प्रोफाइल को सटीक रूप से मापना मुश्किल होता है। एकसमान अक्षीय वेग, v e, उन सभी गणनाओं के लिए माना जाता है जो एक आयामी समस्या विवरणों को नियोजित करती हैं। यह प्रभावी निकास वेग औसत या द्रव्यमान समतुल्य वेग का प्रतिनिधित्व करता है जिस पर रॉकेट वाहन से प्रणोदक निकाला जा रहा है।[10] विशिष्ट आवेग की दो परिभाषाएँ एक दूसरे के समानुपाती हैं, और एक दूसरे से संबंधित हैं:
- सेकंड में विशिष्ट आवेग है,
- मीटर प्रति सेकंड|m/s में मापा गया विशिष्ट आवेग है, जो m/s में मापे गए प्रभावी निकास वेग के समान है (या ft/s यदि g, ft/s में है2),
- मानक गुरुत्व है, 9.80665 मी/से2 (संयुक्त राज्य अमेरिका में प्रथागत इकाइयां 32.174 ft/s2).
यह समीकरण वायु-साँस लेने वाले जेट इंजनों के लिए भी मान्य है, लेकिन व्यवहार में शायद ही कभी इसका उपयोग किया जाता है।
(ध्यान दें कि कभी-कभी अलग-अलग प्रतीकों का उपयोग किया जाता है; उदाहरण के लिए, सी को कभी-कभी निकास वेग के लिए भी देखा जाता है। जबकि प्रतीक की इकाइयों में विशिष्ट आवेग के लिए तार्किक रूप से इस्तेमाल किया जा सकता है (N·s3)/(एम·किग्रा); भ्रम से बचने के लिए, सेकंड में मापे गए विशिष्ट आवेग के लिए इसे आरक्षित करना वांछनीय है।)
यह समीकरण द्वारा रॉकेट पर थ्रस्ट या फॉरवर्ड फोर्स से संबंधित है:[11]
एक रॉकेट को अपने सभी प्रणोदक को अपने साथ ले जाना चाहिए, इसलिए असंतुलित प्रणोदक के द्रव्यमान को रॉकेट के साथ ही तेज किया जाना चाहिए। प्रभावी रॉकेट के निर्माण के लिए वेग में दिए गए परिवर्तन को प्राप्त करने के लिए आवश्यक प्रणोदक के द्रव्यमान को कम करना महत्वपूर्ण है। Tsiolkovsky रॉकेट समीकरण से पता चलता है कि किसी दिए गए खाली द्रव्यमान और प्रणोदक की दी गई मात्रा वाले रॉकेट के लिए, वेग में कुल परिवर्तन प्रभावी निकास वेग के समानुपाती होता है।
प्रणोदन के बिना एक अंतरिक्ष यान अपने प्रक्षेपवक्र और किसी भी गुरुत्वाकर्षण क्षेत्र द्वारा निर्धारित कक्षा का अनुसरण करता है। वांछित वेग परिवर्तन के विपरीत दिशा में निकास द्रव्यमान भेजकर संबंधित वेग पैटर्न से विचलन (इन्हें डेल्टा वी | Δv कहा जाता है) प्राप्त किया जाता है।
वास्तविक निकास गति बनाम प्रभावी निकास गति
जब एक इंजन वायुमंडल के भीतर चलाया जाता है, तो वायुमंडलीय दबाव से निकास वेग कम हो जाता है, बदले में विशिष्ट आवेग को कम करता है। यह निर्वात स्थितियों में प्राप्त वास्तविक निकास वेग बनाम प्रभावी निकास वेग में कमी है। गैस-जनरेटर चक्र रॉकेट इंजन के मामले में, एक से अधिक निकास गैस धारा मौजूद होती है क्योंकि टर्बोपंप निकास गैस एक अलग नोजल के माध्यम से बाहर निकलती है। प्रभावी निकास वेग की गणना करने के लिए दो द्रव्यमान प्रवाहों के साथ-साथ किसी भी वायुमंडलीय दबाव के लिए लेखांकन की आवश्यकता होती है।[citation needed] वायु-श्वास जेट इंजनों के लिए, विशेष रूप से टर्बोफैन, वास्तविक निकास वेग और प्रभावी निकास वेग परिमाण के क्रम से भिन्न होते हैं। ऐसा कई कारणों से होता है। सबसे पहले, प्रतिक्रिया द्रव्यमान के रूप में हवा का उपयोग करके अतिरिक्त संवेग का एक अच्छा सौदा प्राप्त किया जाता है, जैसे कि निकास में दहन उत्पादों में जले हुए ईंधन की तुलना में अधिक द्रव्यमान होता है। अगला, वायुमंडल में अक्रिय गैसें दहन से गर्मी को अवशोषित करती हैं, और परिणामी विस्तार के माध्यम से अतिरिक्त बल प्रदान करती हैं। अंत में, टर्बोफैन और अन्य डिजाइनों के लिए इनटेक एयर के खिलाफ धक्का देकर और भी अधिक जोर दिया जाता है जो सीधे दहन को कभी नहीं देखता है। ये सभी एयरस्पीड और निकास गति के बीच एक बेहतर मेल की अनुमति देने के लिए गठबंधन करते हैं, जो ऊर्जा/प्रणोदक को बचाता है और वास्तविक निकास वेग को कम करते हुए प्रभावी निकास वेग को बढ़ाता है।[citation needed] फिर से, ऐसा इसलिए है क्योंकि हवा के द्रव्यमान को विशिष्ट आवेग गणना में नहीं गिना जाता है, इस प्रकार निकास के ईंधन घटक के द्रव्यमान के लिए सभी जोर की गति को जिम्मेदार ठहराया जाता है, और प्रतिक्रिया द्रव्यमान, निष्क्रिय गैस और संचालित प्रभाव को छोड़ दिया जाता है। विचार से समग्र इंजन दक्षता पर पंखे।
अनिवार्य रूप से, इंजन निकास की गति में केवल ईंधन की तुलना में बहुत अधिक शामिल है, लेकिन विशिष्ट आवेग गणना ईंधन को छोड़कर सब कुछ अनदेखा करती है। भले ही वायु-श्वास इंजन के लिए प्रभावी निकास वेग वास्तविक निकास वेग के संदर्भ में निरर्थक लगता है, फिर भी यह विभिन्न इंजनों की पूर्ण ईंधन दक्षता की तुलना करने के लिए उपयोगी है।
घनत्व विशिष्ट आवेग
एक संबंधित माप, घनत्व विशिष्ट आवेग, जिसे कभी-कभी घनत्व आवेग भी कहा जाता है और आमतौर पर संक्षिप्त रूप में Isd किसी दिए गए प्रणोदक मिश्रण और विशिष्ट आवेग के औसत विशिष्ट गुरुत्व का उत्पाद है।[12] जबकि विशिष्ट आवेग से कम महत्वपूर्ण, लॉन्च वाहन डिजाइन में यह एक महत्वपूर्ण उपाय है, क्योंकि कम विशिष्ट आवेग का तात्पर्य है कि प्रणोदक को स्टोर करने के लिए बड़े टैंकों की आवश्यकता होगी, जो बदले में लॉन्च वाहन के द्रव्यमान अनुपात पर हानिकारक प्रभाव डालेगा।[13]
उदाहरण
Template:Thrust engine efficiency Template:Specific impulse examples समय में मापे गए विशिष्ट आवेग का एक उदाहरण 453 सेकंड है, जो के प्रभावी निकास वेग के बराबर है 4.440 km/s (14,570 ft/s), RS-25 इंजन के लिए जब वैक्यूम में काम कर रहा हो।[14] एक वायु-श्वास जेट इंजन में आमतौर पर रॉकेट की तुलना में बहुत बड़ा विशिष्ट आवेग होता है; उदाहरण के लिए एक टर्बोफैन जेट इंजन में समुद्र तल पर 6,000 सेकंड या उससे अधिक का विशिष्ट आवेग हो सकता है जबकि एक रॉकेट 200 और 400 सेकंड के बीच होगा।[15] एक वायु-श्वास इंजन एक रॉकेट इंजन की तुलना में बहुत अधिक प्रणोदक कुशल है, क्योंकि हवा दहन के लिए प्रतिक्रिया द्रव्यमान और ऑक्सीकारक के रूप में कार्य करती है जिसे प्रणोदक के रूप में ले जाने की आवश्यकता नहीं होती है, और वास्तविक निकास गति बहुत कम होती है, इसलिए गतिज ऊर्जा निकास कम होता है और इस प्रकार जेट इंजन जोर उत्पन्न करने के लिए बहुत कम ऊर्जा का उपयोग करता है।[16] जबकि वायु-श्वास इंजनों के लिए वास्तविक निकास वेग कम है, जेट इंजनों के लिए प्रभावी निकास वेग बहुत अधिक है। ऐसा इसलिए है क्योंकि प्रभावी निकास वेग गणना मानती है कि प्रणोदक सभी प्रतिक्रिया द्रव्यमान और सभी जोर प्रदान कर रहा है। इसलिए प्रभावी निकास वेग वायु-श्वास इंजनों के लिए भौतिक रूप से अर्थपूर्ण नहीं है; फिर भी, यह अन्य प्रकार के इंजनों के साथ तुलना करने के लिए उपयोगी है।[17] एक रॉकेट इंजन में परीक्षण किए गए रासायनिक प्रणोदक के लिए अब तक का उच्चतम विशिष्ट आवेग था 542 seconds (5.32 km/s) लिथियम, एक अधातु तत्त्व और हाइड्रोजन के त्रिप्रणोदक रॉकेट के साथ। हालाँकि, यह संयोजन अव्यवहारिक है। लिथियम और फ्लोरीन दोनों अत्यंत संक्षारक हैं, लिथियम हवा के संपर्क में आने पर प्रज्वलित होता है, फ्लोरीन अधिकांश ईंधन के संपर्क में आने पर प्रज्वलित होता है, और हाइड्रोजन, जबकि हाइपरगोलिक नहीं, एक विस्फोटक खतरा है। निकास में फ्लोरीन और हाइड्रोजन फ्लोराइड (एचएफ) बहुत जहरीले होते हैं, जो पर्यावरण को नुकसान पहुंचाते हैं, लॉन्च पैड के आसपास काम करना मुश्किल बनाते हैं, और लॉन्च लाइसेंस प्राप्त करना और भी कठिन बना देता है। रॉकेट का निकास भी आयनित होता है, जो रॉकेट के साथ रेडियो संचार में हस्तक्षेप करेगा।[18][19][20] परमाणु तापीय रॉकेट इंजन पारंपरिक रॉकेट इंजनों से भिन्न होते हैं जिसमें प्रणोदकों को दहन की गर्मी के बजाय बाहरी परमाणु ताप स्रोत द्वारा ऊर्जा की आपूर्ति की जाती है।[21] परमाणु रॉकेट आमतौर पर एक ऑपरेटिंग परमाणु रिएक्टर के माध्यम से तरल हाइड्रोजन गैस पास करके संचालित होता है। 1960 के दशक में परीक्षण से लगभग 850 सेकंड (8,340मी/सेकेंड) के विशिष्ट आवेग प्राप्त हुए, जो स्पेस शटल इंजनों की तुलना में लगभग दोगुने थे।[22] कई अन्य रॉकेट प्रणोदन विधियों, जैसे आयन थ्रस्टर्स, बहुत अधिक विशिष्ट आवेग देते हैं लेकिन बहुत कम जोर के साथ; उदाहरण के लिए SMART-1 उपग्रह पर हॉल-इफेक्ट थ्रस्टर का एक विशिष्ट आवेग है 1,640 s (16.1 km/s) लेकिन केवल का अधिकतम जोर 68 mN (0.015 lbf).[23] चर विशिष्ट आवेग मैग्नेटोप्लाज्मा रॉकेट (VASIMR) इंजन वर्तमान में विकास में सैद्धांतिक रूप से उपज देगा 20 to 300 km/s (66,000 to 984,000 ft/s), और का अधिकतम जोर 5.7 N (1.3 lbf).[24]
यह भी देखें
- जेट इंजिन
- आवेग (भौतिकी)
- Tsiolkovsky रॉकेट समीकरण
- सिस्टम-विशिष्ट आवेग
- विशिष्ट ऊर्जा
- मानक गुरुत्वाकर्षण
- जोर विशिष्ट ईंधन की खपत - प्रति यूनिट जोर ईंधन की खपत
- विशिष्ट थ्रस्ट - डक्ट इंजन के लिए हवा की प्रति यूनिट थ्रस्ट
- उष्णता मान
- ऊर्जा घनत्व
- डेल्टा-वी (भौतिकी)
- रॉकेट प्रणोदक
- तरल रॉकेट प्रणोदक
टिप्पणियाँ
संदर्भ
- ↑ "विशिष्ट आवेग क्या है?". Qualitative Reasoning Group. Retrieved 22 December 2009.
- ↑ Hutchinson, Lee (14 April 2013). "नया F-1B रॉकेट इंजन 1.8M lbs थ्रस्ट के साथ अपोलो-एरा डिज़ाइन को अपग्रेड करता है". Ars Technica. Retrieved 15 April 2013.
रॉकेट की ईंधन प्रभावशीलता के माप को इसका विशिष्ट आवेग कहा जाता है (संक्षिप्त रूप में 'आईएसपी' - या अधिक उचित रूप से आईएसपी) .... 'द्रव्यमान विशिष्ट आवेग ... एक रासायनिक प्रतिक्रिया की जोर-उत्पादक प्रभावशीलता का वर्णन करता है और यह सबसे आसानी से होता है समय की एक इकाई में जलाए गए ईंधन और ऑक्सीडाइज़र प्रणोदक के प्रत्येक पाउंड (द्रव्यमान) द्वारा उत्पादित थ्रस्ट बल की मात्रा के रूप में माना जाता है। यह रॉकेट के लिए मील प्रति गैलन (mpg) के माप की तरह है।'
- ↑ "लेजर-संचालित इंटरस्टेलर जांच (प्रस्तुति)". Archived from the original on 2 October 2013. Retrieved 16 November 2013.
- ↑ "मिशन अवलोकन". exploreMarsnow. Retrieved 23 December 2009.
- ↑ "विशिष्ट आवेग". www.grc.nasa.gov.
- ↑ "विशिष्ट आवेग क्या है?". www.qrg.northwestern.edu.
- ↑ "विशिष्ट ईंधन की खपत". www.grc.nasa.gov. Retrieved 13 May 2021.
- ↑ Rocket Propulsion Elements, 7th Edition by George P. Sutton, Oscar Biblarz
- ↑ Benson, Tom (11 July 2008). "विशिष्ट आवेग". NASA. Retrieved 22 December 2009.
- ↑ George P. Sutton & Oscar Biblarz (2016). रॉकेट प्रणोदन तत्व. John Wiley & Sons. p. 27. ISBN 978-1-118-75388-0.
- ↑ Thomas A. Ward (2010). एयरोस्पेस प्रणोदन प्रणाली. John Wiley & Sons. p. 68. ISBN 978-0-470-82497-9.
- ↑ घनत्व विशिष्ट आवेग. Retrieved 20 September 2022.
{{cite encyclopedia}}
:|website=
ignored (help) - ↑ "रॉकेट प्रणोदक". braeunig.us. Retrieved 20 September 2022.
- ↑ "एसएसएमई". www.astronautix.com. Archived from the original on 3 March 2016.
- ↑ "11.6 जेट इंजन का प्रदर्शन". web.mit.edu.
- ↑ Dunn, Bruce P. (2001). "डन की रीडमी". Archived from the original on 20 October 2013. Retrieved 12 July 2014.
- ↑ "प्रभावी निकास वेग". Encyclopedia Britannica.
{{cite web}}
: Text "अभियांत्रिकी" ignored (help) - ↑ "ईंधन - वर्तमान में लिथियम-फ्लोरीन-हाइड्रोजन ट्राइप्रोपेलेंट कहां है?". Space Exploration Stack Exchange.
- ↑ Arbit, H.; Clapp, S.; Nagai, C. (1968). "Investigation of the lithium-fluorine-hydrogen tripropellant system". चौथा प्रणोदन संयुक्त विशेषज्ञ सम्मेलन. doi:10.2514/6.1968-618.
- ↑ ARBIT, H. A., CLAPP, S. D., NAGAI, C. K., Lithium-fluorine-hydrogen propellant investigation Final report NASA, 1 May 1970.
- ↑ "अंतरिक्ष प्रणोदन और मिशन विश्लेषण कार्यालय". Archived from the original on 12 April 2011. Retrieved 20 July 2011.
- ↑ National Aeronautics and Space Administration, Nuclear Propulsion in Space (in English), archived from the original on 11 December 2021, retrieved 24 February 2021
- ↑ "एक उच्च विशिष्ट आवेग क्सीनन हॉल इफेक्ट थ्रस्टर की विशेषता". Archived from the original on 24 March 2012. Retrieved 20 July 2011.
{{cite web}}
: Text "मेंडेली" ignored (help) - ↑ Ad Astra (23 November 2010). "VASIMR® VX-200 ने पूर्ण शक्ति दक्षता मील का पत्थर पूरा किया" (PDF). Archived from the original (PDF) on 30 October 2012. Retrieved 23 June 2014.
बाहरी कड़ियाँ
- RPA - Design Tool for Liquid Rocket Engine Analysis
- List of Specific Impulses of various rocket fuels
श्रेणी:रॉकेट प्रणोदन
श्रेणी: अंतरिक्ष यान प्रणोदन
श्रेणी:भौतिक मात्रा
श्रेणी:शास्त्रीय यांत्रिकी
श्रेणी:इंजन प्रौद्योगिकी