मेरोमॉर्फिक फलन
जटिल विश्लेषण के गणितीय क्षेत्र में, जटिल समतल के एक खुले उपसमुच्चय 'D' पर एक मेरोमोर्फिक फ़ंक्शन(गणित) एक ऐसा फलन है जो पृथक बिंदुओं के एक समूह को छोड़कर सभी 'D' पर होलोमॉर्फिक फ़ंक्शन होता है, जो फलन के ध्रुव(जटिल विश्लेषण) हैं।[1] यह शब्द ग्रीक भाषा मेरोस(μέρος|μέρος) से आया है, जिसका अर्थ है "भाग"[lower-alpha 1]
'D' पर प्रत्येक मेरोमोर्फिक फ़ंक्शन को D पर परिभाषित दो पूर्णसममितिक फलनों(भाजक 0 स्थिर नहीं) के बीच के अनुपात के रूप में व्यक्त किया जा सकता है: किसी भी ध्रुव को भाजक के शून्य के साथ मेल खाना चाहिए।
अनुमानी विवरण
सहजता से, एक मेरोमोर्फिक फ़ंक्शन दो ठीक प्रकार से व्यवहार(पूर्णसममितिक) फलनों का अनुपात है। इस प्रकार के एक फलन अभी भी ठीक प्रकार से व्यवहार किया जाएगा, संभवतः उन बिंदुओं को छोड़कर जहां अंश का भाजक शून्य है। यदि हर में z पर शून्य है और अंश में नहीं है, तो फलन का मान अनंत तक पहुंच जाएगा; यदि दोनों भागों में z पर शून्य है, तो किसी को इन शून्यों के बहुपद के मूल की बहुलता(गुणन-गणित) की तुलना करनी चाहिए।
बीजगणितीय दृष्टिकोण से, यदि फलन का डोमेन समूह से जुड़ा हुआ है, तो मेरोमोर्फिक फलनों का समूह पूर्णसममितिक फलनों के समूह के अभिन्न डोमेन के अंशों का क्षेत्र है। यह परिमेय संख्याओं और पूर्णांकों के बीच संबंध के अनुरूप है।
पूर्व, वैकल्पिक उपयोग
अध्ययन के दोनों क्षेत्र जिसमें शब्द का प्रयोग किया जाता है और शब्द का सटीक अर्थ 20 वीं शताब्दी में बदल गया। 1930 में, समूह सिद्धांत में, एक मेरोमोर्फिक फ़ंक्शन(या मेरोमोर्फ) समूह G से स्वयं में एक फलन था जो समूह पर उत्पाद को संरक्षित करता था। इस फलन की प्रतिरूप को G का स्वसमाकृतिकता कहा जाता था।[2] इसी प्रकार, एक समरूपी फलन (या समरूप) उन समूहों के बीच एक फलन था जो उत्पाद को संरक्षित करता था, जबकि एक समरूपता एक समरूप की प्रतिरूप थी। शब्द का यह रूप अब अप्रचलित है, और समूह सिद्धांत में संबंधित शब्द मेरोमोर्फ का अब उपयोग नहीं किया जाता है।
अंतःरूपता शब्द अब फलन के लिए ही उपयोग किया जाता है, फलन के प्रतिरूप को कोई विशेष नाम नहीं दिया गया है।
एक मेरोमोर्फिक फ़ंक्शन अनिवार्य रूप से एक अंतःरूपता नहीं है, क्योंकि इसके ध्रुवों पर जटिल बिंदु इसके डोमेन में नहीं हैं, लेकिन इसकी सीमा में हो सकते हैं।
गुण
चूंकि मेरोमोर्फिक फ़ंक्शन के ध्रुव पृथक हैं, इसलिए अधिक से अधिक गणनीय हैं।[3] ध्रुवों का समूह अनंत हो सकता है, जैसा कि फलन द्वारा उदाहरण दिया गया है
उच्च विमा
कई जटिल चरों में, मेरोमोर्फिक फ़ंक्शन को स्थानीय रूप से दो पूर्णसममितिक फलन के भागफल के रूप में परिभाषित किया जाता है। उदाहरण के लिए, द्वि-विमीय जटिल सजातीय स्थान पर मेरोमोर्फिक फ़ंक्शन है। यहाँ यह अब सच नहीं है कि प्रत्येक मेरोमॉर्फिक फ़ंक्शन को रीमैन क्षेत्र में मूल्यों के साथ एक पूर्णसममितिक फलन के रूप में माना जा सकता है: सह विमा दो की "अनिश्चितता" का एक समूह है (दिए गए उदाहरण में इस समूह में मूल) सम्मिलित हैं।
विमा एक के विपरीत, उच्च विमाओं में सघन जटिल विविध स्थित होते हैं, जिन पर कोई गैर-निरंतर मेरोमोर्फिक फ़ंक्शन नहीं होते हैं, उदाहरण के लिए, सबसे जटिल टोरस।
उदाहरण
- सभी तर्कसंगत फलन, उदाहरण के लिए पूर्ण जटिल तल पर मेरोमोर्फिक हैं।
- फलन साथ ही साथ गामा फलन और रीमैन जीटा फलन पूर्ण जटिल तल पर मेरोमोर्फिक हैं।[3]
- फलन को जटिल तल में परिभाषित किया गया है,मूल को छोड़कर, 0. यद्यपि 0 इस फलन का ध्रुव नहीं है, बल्कि एक आवश्यक विलक्षणता है। इस प्रकार, यह फलन पूर्ण जटिल समतल में मेरोमोर्फिक नहीं है। यद्यपि, यह पर मेरोमोर्फिक(यहां तक कि पूर्णसममितिक) है।
- जटिल लघुगणक फलन संपूर्ण जटिल तल पर मेरोमोर्फिक नहीं है, क्योंकि इसे मात्र पृथक बिंदुओं के एक समूह को छोड़कर पूर्ण जटिल तल पर परिभाषित नहीं किया जा सकता है।[3]
- फलनक्रम पूर्ण समतल में मेरोमोर्फिक नहीं है, क्योंकि बिंदु ध्रुवों का एक संचय बिंदु है और इस प्रकार यह एक पृथक विलक्षणता नहीं है।[3]
- फलनक्रम मेरोमोर्फिक भी नहीं है, क्योंकि इसमें 0 पर एक आवश्यक विलक्षणता है।
रीमैन सतहों पर
रीमैन सतह पर, प्रत्येक बिंदु एक खुले निकटवर्ती को मानते है जो जटिल तल के एक खुले उपसमुच्चय के लिए द्विसमरूपता है। इस प्रकार प्रत्येक रीमैन सतह के लिए मेरोमोर्फिक फ़ंक्शन की धारणा को परिभाषित किया जा सकता है।
जब D संपूर्ण रीमैन क्षेत्र है, मेरोमोर्फिक फलनों का क्षेत्र जटिल क्षेत्र पर एक चर में तर्कसंगत फलनों का क्षेत्र है, क्योंकि कोई यह सिद्ध कर सकता है कि क्षेत्र पर कोई मेरोमोर्फिक फ़ंक्शन तर्कसंगत है। (यह तथाकथित जीएजीए सिद्धांत का एक विशेष विषय है।)
प्रत्येक रीमैन सतह के लिए, मेरोमोर्फिक फ़ंक्शन एक पूर्णसममितिक फलन के समान होता है जो रीमैन क्षेत्र के लिए प्रतिचित्रित करता है और जो ∞ के बराबर निरंतर फलन नहीं होता है। ध्रुव उन सम्मिश्र संख्याओं के अनुरूप होते हैं जिन्हें ∞ से प्रतिचित्रित किया जाता है।
एक गैर-सघन रीमैन सतह पर, प्रत्येक मेरोमोर्फिक फ़ंक्शन को दो (वैश्विक रूप से परिभाषित) पूर्णसममितिक फलन के भागफल के रूप में समझा जा सकता है। इसके विपरीत, एक सघन रीमैन सतह पर, प्रत्येक पूर्णसममितिक फलन स्थिर होता है, जबकि सघन गैर-निरंतर मेरोमोर्फिक फ़ंक्शन स्थित होते हैं।
यह भी देखें
- कजिन समस्या
- मित्ताग-लेफ्फलर की प्रमेय
- वीयरस्ट्रास गुणनखंड प्रमेय
फुटनोट्स
संदर्भ
- ↑ Hazewinkel, Michiel, ed. (2001) [1994]. "Meromorphic function". Encyclopedia of Mathematics. Springer Science+Business Media B.V. ; Kluwer Academic Publishers. ISBN 978-1-55608-010-4.
- ↑ Zassenhaus, Hans (1937). Lehrbuch der Gruppentheorie (1st ed.). Leipzig; Berlin: B. G. Teubner Verlag. pp. 29, 41.
- ↑ 3.0 3.1 3.2 3.3 Cite error: Invalid
<ref>
tag; no text was provided for refs namedLang_1999